
boltons Documentation
Release 18.0.1

Mahmoud Hashemi

August 30, 2018

Contents

1 Installation and Integration 3

2 Third-party packages 5

3 Gaps 7

4 Section listing 9
4.1 Architecture . 9
4.2 cacheutils - Caches and caching . 10
4.3 debugutils - Debugging utilities . 15
4.4 dictutils - Mapping types (OMD) . 16
4.5 ecoutils - Ecosystem analytics . 21
4.6 fileutils - Filesystem helpers . 23
4.7 formatutils - str.format() toolbox . 26
4.8 funcutils - functools fixes . 28
4.9 gcutils - Garbage collecting tools . 31
4.10 ioutils - Input/output enhancements . 32
4.11 iterutils - itertools improvements . 34
4.12 jsonutils - JSON interactions . 43
4.13 listutils - list derivatives . 44
4.14 mathutils - Mathematical functions . 45
4.15 mboxutils - Unix mailbox utilities . 46
4.16 namedutils - Lightweight containers . 47
4.17 queueutils - Priority queues . 48
4.18 setutils - IndexedSet type . 49
4.19 socketutils - socket wrappers . 51
4.20 statsutils - Statistics fundamentals . 55
4.21 strutils - Text manipulation . 62
4.22 tableutils - 2D data structure . 67
4.23 tbutils - Tracebacks and call stacks . 69
4.24 timeutils - datetime additions . 72
4.25 typeutils - Type handling . 76
4.26 urlutils - Structured URL . 78

Python Module Index 85

i

ii

boltons Documentation, Release 18.0.1

boltons should be builtins.

Boltons is a set of pure-Python utilities in the same spirit as — and yet conspicuously missing from — the standard
library, including:

• Atomic file saving, bolted on with fileutils

• A highly-optimized OrderedMultiDict, in dictutils

• Two types of PriorityQueue, in queueutils

• Chunked and windowed iteration, in iterutils

• A full-featured TracebackInfo type, for representing stack traces, in tbutils

• A lightweight UTC timezone available in timeutils.

• Recursive mapping for nested data transforms, with remap

And that’s just a small selection. As of August 30, 2018, boltons is 79 types and 146 functions, spread across 28
modules. See what’s new by checking the CHANGELOG.

Contents 1

https://pypi.python.org/pypi/boltons
http://calver.org
https://docs.python.org/2.7/library/index.html
https://docs.python.org/2.7/library/index.html
https://github.com/mahmoud/boltons/blob/master/CHANGELOG.md

boltons Documentation, Release 18.0.1

2 Contents

CHAPTER 1

Installation and Integration

Boltons can be added to a project in a few ways. There’s the obvious one:

pip install boltons

Then dozens of boltons are just an import away:

from boltons.cacheutils import LRU
lru_cache = LRU()
lru_cache['result'] = 'success'

Due to the nature of utilities, application developers might want to consider other integration options. See the Integra-
tion section of the architecture document for more details.

Boltons is tested against Python 2.6, 2.7, 3.4, 3.5, and PyPy.

3

boltons Documentation, Release 18.0.1

4 Chapter 1. Installation and Integration

CHAPTER 2

Third-party packages

The majority of boltons strive to be “good enough” for a wide range of basic uses, leaving advanced use cases to
Python’s myriad specialized 3rd-party libraries. In many cases the respective boltons module will describe 3rd-
party alternatives worth investigating when use cases outgrow boltons. If you’ve found a natural “next-step” library
worth mentioning, consider filing an issue!

5

https://pypi.python.org/pypi

boltons Documentation, Release 18.0.1

6 Chapter 2. Third-party packages

CHAPTER 3

Gaps

Found something missing in the standard library that should be in boltons? Found something missing in boltons?
First, take a moment to read the very brief Architecture statement to make sure the functionality would be a good fit.

Then, if you are very motivated, submit a Pull Request. Otherwise, submit a short feature request on the Issues page,
and we will figure something out.

7

https://github.com/mahmoud/boltons/pulls
https://github.com/mahmoud/boltons/issues

boltons Documentation, Release 18.0.1

8 Chapter 3. Gaps

CHAPTER 4

Section listing

4.1 Architecture

boltons has a minimalist architecture: remain as consistent, and self-contained as possible, with an eye toward
maintaining its range of use cases and usage patterns as wide as possible.

4.1.1 Integration

Utility libraries are often used extensively within a project, and because they are not often fundamental to the architec-
ture of the application, simplicity and stability may take precedence over version recency. In these cases, developers
can:

1. Copy the whole boltons package into a project.

2. Copy just the utils.py file that a project requires.

Boltons take this into account by design. The boltons package depends on no packages, making it easy for inclusion
into a project. Furthermore, virtually all individual modules have been written to be as self-contained as possible,
allowing cherrypicking of functionality into projects.

4.1.2 Design of a bolton

boltons aims to be a living library, an ever-expanding collection of tested and true utilities. For a bolton to be a
bolton, it should:

1. Be pure-Python and as self-contained as possible.

2. Perform a common task or fulfill a common role.

3. Demonstrate and mitigate some insufficiency in the standard library.

4. Strive for the standard set forth by the standard library by striking a balance between best practice and “good
enough”, correctness and common sense. When in doubt, ask, “what would the standard library do?”

9

boltons Documentation, Release 18.0.1

5. Have approachable documentation with at least one helpful doctest, links to relevant standard library func-
tionality, as well as any 3rd-party packages that provide further capabilities.

Finally, boltons should be substantial implementations of commonly trivialized stumbling blocks and not the other
way around. The larger the problem solved, the less likely the functionality is suitable for inclusion in boltons; boltons
are fundamental and self-contained, not sweeping and architecture-defining.

4.1.3 Themes of boltons

boltons has had a wide variety of inspirations over the years, but a definite set of themes have emerged:

1. From the Python docs:

(a) queueutils - heapq docs

(b) iterutils - itertools docs

(c) timeutils - datetime docs

2. Reimplementations and tweaks of the standard library:

(a) boltons.fileutils.copytree() - shutil.copytree()

(b) boltons.namedutils.namedtuple - collections.namedtuple()

3. One-off implementations discovered in multiple other libraries’ utils.py or equivalent

(a) boltons.strutils.slugify()

(b) boltons.strutils.bytes2human()

(c) boltons.timeutils.relative_time()

4. More powerful multi-purpose data structures

(a) boltons.dictutils.OrderedMultiDict

(b) boltons.setutils.IndexedSet

(c) boltons.listutils.BList

(d) boltons.namedutils.namedlist

(e) boltons.tableutils.Table

5. Personal practice and experience

(a) boltons.debugutils

(b) boltons.gcutils

(c) boltons.tbutils

4.2 cacheutils - Caches and caching

cacheutils contains consistent implementations of fundamental cache types. Currently there are two to choose
from:

• LRI - Least-recently inserted

• LRU - Least-recently used

10 Chapter 4. Section listing

https://docs.python.org/2.7/library/doctest.html#module-doctest
https://docs.python.org/2/library/heapq.html#priority-queue-implementation-notes
https://docs.python.org/2/library/itertools.html#recipes
https://docs.python.org/2/library/datetime.html#tzinfo-objects
https://docs.python.org/2.7/library/shutil.html#shutil.copytree
https://docs.python.org/2.7/library/collections.html#collections.namedtuple

boltons Documentation, Release 18.0.1

Both caches are dict subtypes, designed to be as interchangeable as possible, to facilitate experimentation. A key
practice with performance enhancement with caching is ensuring that the caching strategy is working. If the cache is
constantly missing, it is just adding more overhead and code complexity. The standard statistics are:

• hit_count - the number of times the queried key has been in the cache

• miss_count - the number of times a key has been absent and/or fetched by the cache

• soft_miss_count - the number of times a key has been absent, but a default has been provided by the
caller, as with dict.get() and dict.setdefault(). Soft misses are a subset of misses, so this number
is always less than or equal to miss_count.

Additionally, cacheutils provides ThresholdCounter, a cache-like bounded counter useful for online statis-
tics collection.

Learn more about caching algorithms on Wikipedia.

4.2.1 Least-Recently Inserted (LRI)

The LRI is the simpler cache, implementing a very simple first-in, first-out (FIFO) approach to cache eviction. If
the use case calls for simple, very-low overhead caching, such as somewhat expensive local operations (e.g., string
operations), then the LRI is likely the right choice.

class boltons.cacheutils.LRI(max_size=128, values=None, on_miss=None)
The LRI implements the basic Least Recently Inserted strategy to caching. One could also think of this as a
SizeLimitedDefaultDict.

on_miss is a callable that accepts the missing key (as opposed to collections.defaultdict’s “de-
fault_factory”, which accepts no arguments.) Also note that, like the LRU , the LRI is instrumented with
statistics tracking.

>>> cap_cache = LRI(max_size=2)
>>> cap_cache['a'], cap_cache['b'] = 'A', 'B'
>>> from pprint import pprint as pp
>>> pp(cap_cache)
{'a': 'A', 'b': 'B'}
>>> [cap_cache['b'] for i in range(3)][0]
'B'
>>> cap_cache['c'] = 'C'
>>> print(cap_cache.get('a'))
None
>>> cap_cache.hit_count, cap_cache.miss_count, cap_cache.soft_miss_count
(3, 1, 1)

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from dict/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

4.2. cacheutils - Caches and caching 11

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict.get
https://docs.python.org/2.7/library/stdtypes.html#dict.setdefault
https://en.wikipedia.org/wiki/Cache_algorithms#Examples
https://docs.python.org/2.7/library/collections.html#collections.defaultdict

boltons Documentation, Release 18.0.1

4.2.2 Least-Recently Used (LRU)

The LRU is the more advanced cache, but it’s still quite simple. When it reaches capacity, a new insertion replaces
the least-recently used item. This strategy makes the LRU a more effective cache than the LRI for a wide variety
of applications, but also entails more operations for all of its APIs, especially reads. Unlike the LRI, the LRU has
threadsafety built in.

class boltons.cacheutils.LRU(max_size=128, values=None, on_miss=None)
The LRU is dict subtype implementation of the Least-Recently Used caching strategy.

Parameters

• max_size (int) – Max number of items to cache. Defaults to 128.

• values (iterable) – Initial values for the cache. Defaults to None.

• on_miss (callable) – a callable which accepts a single argument, the key not present
in the cache, and returns the value to be cached.

>>> cap_cache = LRU(max_size=2)
>>> cap_cache['a'], cap_cache['b'] = 'A', 'B'
>>> from pprint import pprint as pp
>>> pp(dict(cap_cache))
{'a': 'A', 'b': 'B'}
>>> [cap_cache['b'] for i in range(3)][0]
'B'
>>> cap_cache['c'] = 'C'
>>> print(cap_cache.get('a'))
None

This cache is also instrumented with statistics collection. hit_count, miss_count, and
soft_miss_count are all integer members that can be used to introspect the performance of the cache.
(“Soft” misses are misses that did not raise KeyError, e.g., LRU.get() or on_miss was used to cache a
default.

>>> cap_cache.hit_count, cap_cache.miss_count, cap_cache.soft_miss_count
(3, 1, 1)

Other than the size-limiting caching behavior and statistics, LRU acts like its parent class, the built-in Python
dict.

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from dict/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

12 Chapter 4. Section listing

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/stdtypes.html#dict

boltons Documentation, Release 18.0.1

4.2.3 Automatic function caching

Continuing in the theme of cache tunability and experimentation, cacheutils also offers a pluggable way to cache
function return values: the cached() function decorator and the cachedmethod() method decorator.

boltons.cacheutils.cached(cache, scoped=True, typed=False, key=None)
Cache any function with the cache object of your choosing. Note that the function wrapped should take only
hashable arguments.

Parameters

• cache (Mapping) – Any dict-like object suitable for use as a cache. Instances of the
LRU and LRI are good choices, but a plain dict can work in some cases, as well. This
argument can also be a callable which accepts no arguments and returns a mapping.

• scoped (bool) – Whether the function itself is part of the cache key. True by default,
different functions will not read one another’s cache entries, but can evict one another’s
results. False can be useful for certain shared cache use cases. More advanced behavior
can be produced through the key argument.

• typed (bool) – Whether to factor argument types into the cache check. Default False,
setting to True causes the cache keys for 3 and 3.0 to be considered unequal.

>>> my_cache = LRU()
>>> @cached(my_cache)
... def cached_lower(x):
... return x.lower()
...
>>> cached_lower("CaChInG's FuN AgAiN!")
"caching's fun again!"
>>> len(my_cache)
1

boltons.cacheutils.cachedmethod(cache, scoped=True, typed=False, key=None)
Similar to cached(), cachedmethod is used to cache methods based on their arguments, using any dict-
like cache object.

Parameters

• cache (str/Mapping/callable) – Can be the name of an attribute on the instance,
any Mapping/dict-like object, or a callable which returns a Mapping.

• scoped (bool) – Whether the method itself and the object it is bound to are part of the
cache keys. True by default, different methods will not read one another’s cache results.
False can be useful for certain shared cache use cases. More advanced behavior can be
produced through the key arguments.

• typed (bool) – Whether to factor argument types into the cache check. Default False,
setting to True causes the cache keys for 3 and 3.0 to be considered unequal.

• key (callable) – A callable with a signature that matches make_cache_key() that
returns a tuple of hashable values to be used as the key in the cache.

>>> class Lowerer(object):
... def __init__(self):
... self.cache = LRI()
...
... @cachedmethod('cache')
... def lower(self, text):
... return text.lower()

(continues on next page)

4.2. cacheutils - Caches and caching 13

https://docs.python.org/2/glossary.html#term-hashable
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool

boltons Documentation, Release 18.0.1

(continued from previous page)

...
>>> lowerer = Lowerer()
>>> lowerer.lower('WOW WHO COULD GUESS CACHING COULD BE SO NEAT')
'wow who could guess caching could be so neat'
>>> len(lowerer.cache)
1

Similar functionality can be found in Python 3.4’s functools.lru_cache() decorator, but the functools ap-
proach does not support the same cache strategy modification, nor does it support sharing the cache object across
multiple functions.

boltons.cacheutils.cachedproperty(func)
The cachedproperty is used similar to property, except that the wrapped method is only called once.
This is commonly used to implement lazy attributes.

After the property has been accessed, the value is stored on the instance itself, using the same name as the
cachedproperty. This allows the cache to be cleared with delattr(), or through manipulating the object’s
__dict__.

4.2.4 Threshold-bounded Counting

class boltons.cacheutils.ThresholdCounter(threshold=0.001)
A bounded dict-like Mapping from keys to counts. The ThresholdCounter automatically compacts after every
(1 / threshold) additions, maintaining exact counts for any keys whose count represents at least a threshold ratio
of the total data. In other words, if a particular key is not present in the ThresholdCounter, its count represents
less than threshold of the total data.

>>> tc = ThresholdCounter(threshold=0.1)
>>> tc.add(1)
>>> tc.items()
[(1, 1)]
>>> tc.update([2] * 10)
>>> tc.get(1)
0
>>> tc.add(5)
>>> 5 in tc
True
>>> len(list(tc.elements()))
11

As you can see above, the API is kept similar to collections.Counter. The most notable feature omis-
sions being that counted items cannot be set directly, uncounted, or removed, as this would disrupt the math.

Use the ThresholdCounter when you need best-effort long-lived counts for dynamically-keyed data. Without
a bounded datastructure such as this one, the dynamic keys often represent a memory leak and can impact
application reliability. The ThresholdCounter’s item replacement strategy is fully deterministic and can be
thought of as Amortized Least Relevant. The absolute upper bound of keys it will store is (2/threshold), but
realistically (1/threshold) is expected for uniformly random datastreams, and one or two orders of magnitude
better for real-world data.

This algorithm is an implementation of the Lossy Counting algorithm described in “Approximate Frequency
Counts over Data Streams” by Manku & Motwani. Hat tip to Kurt Rose for discovery and initial implementation.

add(key)
Increment the count of key by 1, automatically adding it if it does not exist.

14 Chapter 4. Section listing

https://docs.python.org/2.7/library/functions.html#property
https://docs.python.org/2.7/library/functions.html#delattr
https://docs.python.org/2.7/library/collections.html#collections.Counter

boltons Documentation, Release 18.0.1

Cache compaction is triggered every 1/threshold additions.

elements()
Return an iterator of all the common elements tracked by the counter. Yields each key as many times as it
has been seen.

get(key, default=0)
Get count for key, defaulting to 0.

get_common_count()
Get the sum of counts for keys exceeding the configured data threshold.

get_commonality()
Get a float representation of the effective count accuracy. The higher the number, the less uniform the keys
being added, and the higher accuracy and efficiency of the ThresholdCounter.

If a stronger measure of data cardinality is required, consider using hyperloglog.

get_uncommon_count()
Get the sum of counts for keys that were culled because the associated counts represented less than the
configured threshold. The long-tail counts.

most_common(n=None)
Get the top n keys and counts as tuples. If n is omitted, returns all the pairs.

update(iterable, **kwargs)
Like dict.update() but add counts instead of replacing them, used to add multiple items in one call.

Source can be an iterable of keys to add, or a mapping of keys to integer counts.

4.3 debugutils - Debugging utilities

A small set of utilities useful for debugging misbehaving applications. Currently this focuses on ways to use pdb, the
built-in Python debugger.

boltons.debugutils.pdb_on_signal(signalnum=None)
Installs a signal handler for signalnum, which defaults to SIGINT, or keyboard interrupt/ctrl-c. This signal
handler launches a pdb breakpoint. Results vary in concurrent systems, but this technique can be useful for
debugging infinite loops, or easily getting into deep call stacks.

Parameters signalnum (int) – The signal number of the signal to handle with pdb. Defaults to
signal.SIGINT, see signal for more information.

boltons.debugutils.pdb_on_exception(limit=100)
Installs a handler which, instead of exiting, attaches a post-mortem pdb console whenever an unhandled excep-
tion is encountered.

Parameters limit (int) – the max number of stack frames to display when printing the traceback

A similar effect can be achieved from the command-line using the following command:

python -m pdb your_code.py

But pdb_on_exception allows you to do this conditionally and within your application. To restore default
behavior, just do:

sys.excepthook = sys.__excepthook__

4.3. debugutils - Debugging utilities 15

https://docs.python.org/2.7/library/pdb.html#module-pdb
https://docs.python.org/2.7/library/pdb.html#module-pdb
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/signal.html#module-signal
https://docs.python.org/2.7/library/functions.html#int

boltons Documentation, Release 18.0.1

boltons.debugutils.wrap_trace(obj, hook=<function trace_print_hook>, which=None,
events=None, label=None)

Monitor an object for interactions. Whenever code calls a method, gets an attribute, or sets an attribute, an event
is called. By default the trace output is printed, but a custom tracing hook can be passed.

Parameters

• obj (object) – New- or old-style object to be traced. Built-in objects like lists and dicts
also supported.

• hook (callable) – A function called once for every event. See below for details.

• which (str) – One or more attribute names to trace, or a function accepting attribute name
and value, and returing True/False.

• events (str) – One or more kinds of events to call hook on. Expected values
are ['get', 'set', 'del', 'call', 'raise', 'return']. Defaults to all
events.

• label (str) – A name to associate with the traced object Defaults to hexadecimal memory
address, similar to repr.

The object returned is not the same object as the one passed in. It will not pass identity checks. However, it will
pass isinstance() checks, as it is a new instance of a new subtype of the object passed.

4.4 dictutils - Mapping types (OMD)

Python has a very powerful mapping type at its core: the dict type. While versatile and featureful, the dict
prioritizes simplicity and performance. As a result, it does not retain the order of item insertion1, nor does it store
multiple values per key. It is a fast, unordered 1:1 mapping.

The OrderedMultiDict contrasts to the built-in dict, as a relatively maximalist, ordered 1:n subtype of dict.
Virtually every feature of dict has been retooled to be intuitive in the face of this added complexity. Additional
methods have been added, such as collections.Counter-like functionality.

A prime advantage of the OrderedMultiDict (OMD) is its non-destructive nature. Data can be added to an OMD
without being rearranged or overwritten. The property can allow the developer to work more freely with the data, as
well as make more assumptions about where input data will end up in the output, all without any extra work.

One great example of this is the OMD.inverted() method, which returns a new OMD with the values as keys and
the keys as values. All the data and the respective order is still represented in the inverted form, all from an operation
which would be outright wrong and reckless with a built-in dict or collections.OrderedDict.

The OMD has been performance tuned to be suitable for a wide range of usages, including as a basic unordered
MultiDict. Special thanks to Mark Williams for all his help.

boltons.dictutils.MultiDict
alias of boltons.dictutils.OrderedMultiDict

boltons.dictutils.OMD
alias of boltons.dictutils.OrderedMultiDict

class boltons.dictutils.OrderedMultiDict(*args, **kwargs)
A MultiDict is a dictionary that can have multiple values per key and the OrderedMultiDict (OMD) is a Multi-
Dict that retains original insertion order. Common use cases include:

• handling query strings parsed from URLs

• inverting a dictionary to create a reverse index (values to keys)

1 As of 2015, basic dicts on PyPy are ordered, and as of December 2017, basic dicts in CPython 3 are now ordered, as well.

16 Chapter 4. Section listing

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#isinstance
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/collections.html#collections.Counter
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/collections.html#collections.OrderedDict
https://github.com/markrwilliams
http://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html
https://mail.python.org/pipermail/python-dev/2017-December/151283.html

boltons Documentation, Release 18.0.1

• stacking data from multiple dictionaries in a non-destructive way

The OrderedMultiDict constructor is identical to the built-in dict, and overall the API constitutes an intuitive
superset of the built-in type:

>>> omd = OrderedMultiDict()
>>> omd['a'] = 1
>>> omd['b'] = 2
>>> omd.add('a', 3)
>>> omd.get('a')
3
>>> omd.getlist('a')
[1, 3]

Some non-dict-like behaviors also make an appearance, such as support for reversed():

>>> list(reversed(omd))
['b', 'a']

Note that unlike some other MultiDicts, this OMD gives precedence to the most recent value added. omd['a']
refers to 3, not 1.

>>> omd
OrderedMultiDict([('a', 1), ('b', 2), ('a', 3)])
>>> omd.poplast('a')
3
>>> omd
OrderedMultiDict([('a', 1), ('b', 2)])
>>> omd.pop('a')
1
>>> omd
OrderedMultiDict([('b', 2)])

Note that calling dict() on an OMD results in a dict of keys to lists of values:

>>> from pprint import pprint as pp # ensuring proper key ordering
>>> omd = OrderedMultiDict([('a', 1), ('b', 2), ('a', 3)])
>>> pp(dict(omd))
{'a': [1, 3], 'b': [2]}

Note that modifying those lists will modify the OMD. If you want a safe-to-modify or flat dictionary, use
OrderedMultiDict.todict().

>>> pp(omd.todict())
{'a': 3, 'b': 2}
>>> pp(omd.todict(multi=True))
{'a': [1, 3], 'b': [2]}

With multi=False, items appear with the keys in to original insertion order, alongside the most-recently
inserted value for that key.

>>> OrderedMultiDict([('a', 1), ('b', 2), ('a', 3)]).items(multi=False)
[('a', 3), ('b', 2)]

add(k, v)
Add a single value v under a key k. Existing values under k are preserved.

addlist(k, v)
Add an iterable of values underneath a specific key, preserving any values already under that key.

4.4. dictutils - Mapping types (OMD) 17

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#reversed

boltons Documentation, Release 18.0.1

>>> omd = OrderedMultiDict([('a', -1)])
>>> omd.addlist('a', range(3))
>>> omd
OrderedMultiDict([('a', -1), ('a', 0), ('a', 1), ('a', 2)])

Called addlist for consistency with getlist(), but tuples and other sequences and iterables work.

clear()
Empty the dictionary.

copy()
Return a shallow copy of the dictionary.

counts()
Returns a mapping from key to number of values inserted under that key. Like collections.
Counter, but returns a new OrderedMultiDict.

classmethod fromkeys(keys, default=None)
Create a dictionary from a list of keys, with all the values set to default, or None if default is not set.

get(k, default=None)
Return the value for key k if present in the dictionary, else default. If default is not given, None is returned.
This method never raises a KeyError.

To get all values under a key, use OrderedMultiDict.getlist().

getlist(k, default=_MISSING)
Get all values for key k as a list, if k is in the dictionary, else default. The list returned is a copy and can be
safely mutated. If default is not given, an empty list is returned.

inverted()
Returns a new OrderedMultiDict with values and keys swapped, like creating dictionary transposi-
tion or reverse index. Insertion order is retained and all keys and values are represented in the output.

>>> omd = OMD([(0, 2), (1, 2)])
>>> omd.inverted().getlist(2)
[0, 1]

Inverting twice yields a copy of the original:

>>> omd.inverted().inverted()
OrderedMultiDict([(0, 2), (1, 2)])

items(multi=False)
Returns a list containing the output of iteritems(). See that method’s docs for more details.

iteritems(multi=False)
Iterate over the OMD’s items in insertion order. By default, yields only the most-recently inserted value
for each key. Set multi to True to get all inserted items.

iterkeys(multi=False)
Iterate over the OMD’s keys in insertion order. By default, yields each key once, according to the most
recent insertion. Set multi to True to get all keys, including duplicates, in insertion order.

itervalues(multi=False)
Iterate over the OMD’s values in insertion order. By default, yields the most-recently inserted value per
unique key. Set multi to True to get all values according to insertion order.

keys(multi=False)
Returns a list containing the output of iterkeys(). See that method’s docs for more details.

18 Chapter 4. Section listing

https://docs.python.org/2.7/library/collections.html#collections.Counter
https://docs.python.org/2.7/library/collections.html#collections.Counter

boltons Documentation, Release 18.0.1

pop(k, default=_MISSING)
Remove all values under key k, returning the most-recently inserted value. Raises KeyError if the key
is not present and no default is provided.

popall(k, default=_MISSING)
Remove all values under key k, returning them in the form of a list. Raises KeyError if the key is not
present and no default is provided.

poplast(k=_MISSING, default=_MISSING)
Remove and return the most-recently inserted value under the key k, or the most-recently inserted key if k
is not provided. If no values remain under k, it will be removed from the OMD. Raises KeyError if k is
not present in the dictionary, or the dictionary is empty.

setdefault(k, default=_MISSING)
If key k is in the dictionary, return its value. If not, insert k with a value of default and return default.
default defaults to None. See dict.setdefault() for more information.

sorted(key=None, reverse=False)
Similar to the built-in sorted(), except this method returns a new OrderedMultiDict sorted by the
provided key function, optionally reversed.

Parameters

• key (callable) – A callable to determine the sort key of each element. The callable
should expect an item (key-value pair tuple).

• reverse (bool) – Set to True to reverse the ordering.

>>> omd = OrderedMultiDict(zip(range(3), range(3)))
>>> omd.sorted(reverse=True)
OrderedMultiDict([(2, 2), (1, 1), (0, 0)])

Note that the key function receives an item (key-value tuple), so the recommended signature looks like:

>>> omd = OrderedMultiDict(zip('hello', 'world'))
>>> omd.sorted(key=lambda i: i[1]) # i[0] is the key, i[1] is the val
OrderedMultiDict([('o', 'd'), ('l', 'l'), ('e', 'o'), ('h', 'w')])

sortedvalues(key=None, reverse=False)
Returns a copy of the OrderedMultiDict with the same keys in the same order as the original OMD,
but the values within each keyspace have been sorted according to key and reverse.

Parameters

• key (callable) – A single-argument callable to determine the sort key of each element.
The callable should expect an item (key-value pair tuple).

• reverse (bool) – Set to True to reverse the ordering.

>>> omd = OrderedMultiDict()
>>> omd.addlist('even', [6, 2])
>>> omd.addlist('odd', [1, 5])
>>> omd.add('even', 4)
>>> omd.add('odd', 3)
>>> somd = omd.sortedvalues()
>>> somd.getlist('even')
[2, 4, 6]
>>> somd.keys(multi=True) == omd.keys(multi=True)
True
>>> omd == somd

(continues on next page)

4.4. dictutils - Mapping types (OMD) 19

https://docs.python.org/2.7/library/stdtypes.html#dict.setdefault
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool

boltons Documentation, Release 18.0.1

(continued from previous page)

False
>>> somd
OrderedMultiDict([('even', 2), ('even', 4), ('odd', 1), ('odd', 3), ('even',
→˓6), ('odd', 5)])

As demonstrated above, contents and key order are retained. Only value order changes.

todict(multi=False)
Gets a basic dict of the items in this dictionary. Keys are the same as the OMD, values are the most
recently inserted values for each key.

Setting the multi arg to True is yields the same result as calling dict on the OMD, except that all the
value lists are copies that can be safely mutated.

update(E, **F)
Add items from a dictionary or iterable (and/or keyword arguments), overwriting values under an existing
key. See dict.update() for more details.

update_extend(E, **F)
Add items from a dictionary, iterable, and/or keyword arguments without overwriting existing items
present in the dictionary. Like update(), but adds to existing keys instead of overwriting them.

values(multi=False)
Returns a list containing the output of itervalues(). See that method’s docs for more details.

viewitems()→ a set-like object providing a view on OMD’s items

viewkeys()→ a set-like object providing a view on OMD’s keys

viewvalues()→ an object providing a view on OMD’s values

class boltons.dictutils.OneToOne(*a, **kw)
Implements a one-to-one mapping dictionary. In addition to inheriting from and behaving exactly like the
builtin dict, all values are automatically added as keys on a reverse mapping, available as the inv attribute.
This arrangement keeps key and value namespaces distinct.

Basic operations are intuitive:

>>> oto = OneToOne({'a': 1, 'b': 2})
>>> print(oto['a'])
1
>>> print(oto.inv[1])
a
>>> len(oto)
2

Overwrites happens in both directions:

>>> oto.inv[1] = 'c'
>>> print(oto.get('a'))
None
>>> len(oto)
2

For a very similar project, with even more one-to-one functionality, check out bidict.

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

inv

20 Chapter 4. Section listing

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict.update
https://docs.python.org/2.7/library/stdtypes.html#dict
https://github.com/jab/bidict

boltons Documentation, Release 18.0.1

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from dict/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

4.5 ecoutils - Ecosystem analytics

As a programming ecosystem grows, so do the chances of runtime variability.

Python boasts one of the widest deployments for a high-level programming environment, making it a viable target for
all manner of application. But with breadth comes variance, so it’s important to know what you’re working with.

Some basic variations that are common among development machines:

• Executable runtime: CPython, PyPy, Jython, etc., plus build date and compiler

• Language version: 2.4, 2.5, 2.6, 2.7. . . 3.4, 3.5, 3.6

• Host operating system: Windows, OS X, Ubuntu, Debian, CentOS, RHEL, etc.

• Features: 64-bit, IPv6, Unicode character support (UCS-2/UCS-4)

• Built-in library support: OpenSSL, threading, SQLite, zlib

• User environment: umask, ulimit, working directory path

• Machine info: CPU count, hostname, filesystem encoding

See the full example profile below for more.

ecoutils was created to quantify that variability. ecoutils quickly produces an information-dense description of critical
runtime factors, with minimal side effects. In short, ecoutils is like browser and user agent analytics, but for Python
environments.

4.5.1 Transmission and collection

The data is all JSON serializable, and is suitable for sending to a central analytics server. An HTTP-backed service
for this can be found at: https://github.com/mahmoud/espymetrics/

4.5.2 Notable omissions

Due to space constraints (and possibly latency constraints), the following information is deemed not dense enough,
and thus omitted:

• sys.path

• full sysconfig

• environment variables (os.environ)

4.5. ecoutils - Ecosystem analytics 21

https://github.com/mahmoud/espymetrics/
https://docs.python.org/2.7/library/sys.html#sys.path
https://docs.python.org/2.7/library/sysconfig.html#module-sysconfig
https://docs.python.org/2.7/library/os.html#os.environ

boltons Documentation, Release 18.0.1

4.5.3 Compatibility

So far ecoutils has has been tested on Python 2.4, 2.5, 2.6, 2.7, 3.4, 3.5, and PyPy. Various versions have been tested
on Ubuntu, Debian, RHEL, OS X, FreeBSD, and Windows 7.

Note: Boltons typically only support back to Python 2.6, but due to its nature, ecoutils extends backwards compati-
bility to Python 2.4 and 2.5.

4.5.4 Profile generation

Profiles are generated by ecoutils.get_profile().

When run as a module, ecoutils will call get_profile() and print a profile in JSON format:

$ python -m boltons.ecoutils
{

"_eco_version": "1.0.0",
"cpu_count": 4,
"cwd": "/home/mahmoud/projects/boltons",
"fs_encoding": "UTF-8",
"guid": "6b139e7bbf5ad4ed8d4063bf6235b4d2",
"hostfqdn": "mahmoud-host",
"hostname": "mahmoud-host",
"linux_dist_name": "Ubuntu",
"linux_dist_version": "14.04",
"python": {
"argv": "boltons/ecoutils.py",
"bin": "/usr/bin/python",
"build_date": "Jun 22 2015 17:58:13",
"compiler": "GCC 4.8.2",
"features": {

"64bit": true,
"expat": "expat_2.1.0",
"ipv6": true,
"openssl": "OpenSSL 1.0.1f 6 Jan 2014",
"readline": true,
"sqlite": "3.8.2",
"threading": true,
"tkinter": "8.6",
"unicode_wide": true,
"zlib": "1.2.8"

},
"version": "2.7.6 (default, Jun 22 2015, 17:58:13) [GCC 4.8.2]",
"version_info": [

2,
7,
6,
"final",
0

]
},
"time_utc": "2016-05-24 07:59:40.473140",
"time_utc_offset": -8.0,
"ulimit_hard": 4096,
"ulimit_soft": 1024,

(continues on next page)

22 Chapter 4. Section listing

boltons Documentation, Release 18.0.1

(continued from previous page)

"umask": "002",
"uname": {
"machine": "x86_64",
"node": "mahmoud-host",
"processor": "x86_64",
"release": "3.13.0-85-generic",
"system": "Linux",
"version": "#129-Ubuntu SMP Thu Mar 17 20:50:15 UTC 2016"

},
"username": "mahmoud"

}

pip install boltons and try it yourself!

boltons.ecoutils.get_profile(**kwargs)
The main entrypoint to ecoutils. Calling this will return a JSON-serializable dictionary of information about the
current process.

It is very unlikely that the information returned will change during the lifetime of the process, and in most cases
the majority of the information stays the same between runs as well.

get_profile() takes one optional keyword argument, scrub, a bool that, if True, blanks out identifiable
information. This includes current working directory, hostname, Python executable path, command-line argu-
ments, and username. Values are replaced with ‘-‘, but for compatibility keys remain in place.

4.6 fileutils - Filesystem helpers

Virtually every Python programmer has used Python for wrangling disk contents, and fileutils collects solutions
to some of the most commonly-found gaps in the standard library.

4.6.1 Creating, Finding, and Copying

Python’s os, os.path, and shutil modules provide good coverage of file wrangling fundaments, and these func-
tions help close a few remaining gaps.

boltons.fileutils.mkdir_p(path)
Creates a directory and any parent directories that may need to be created along the way, without raising er-
rors for any existing directories. This function mimics the behavior of the mkdir -p command available in
Linux/BSD environments, but also works on Windows.

boltons.fileutils.iter_find_files(directory, patterns, ignored=None)
Returns a generator that yields file paths under a directory, matching patterns using glob syntax (e.g., *.txt).
Also supports ignored patterns.

Parameters

• directory (str) – Path that serves as the root of the search. Yielded paths will include
this as a prefix.

• patterns (str or list) – A single pattern or list of glob-formatted patterns to find
under directory.

• ignored (str or list) – A single pattern or list of glob-formatted patterns to ignore.

For example, finding Python files in the current directory:

4.6. fileutils - Filesystem helpers 23

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/os.html#module-os
https://docs.python.org/2.7/library/os.path.html#module-os.path
https://docs.python.org/2.7/library/shutil.html#module-shutil
https://en.wikipedia.org/wiki/Glob_%28programming%29
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

boltons Documentation, Release 18.0.1

>>> filenames = sorted(iter_find_files(_CUR_DIR, '*.py'))
>>> os.path.basename(filenames[-1])
'urlutils.py'

Or, Python files while ignoring emacs lockfiles:

>>> filenames = iter_find_files(_CUR_DIR, '*.py', ignored='.#*')

boltons.fileutils.copytree(src, dst, symlinks=False, ignore=None)
The copy_tree function is an exact copy of the built-in shutil.copytree(), with one key difference: it
will not raise an exception if part of the tree already exists. It achieves this by using mkdir_p().

Parameters

• src (str) – Path of the source directory to copy.

• dst (str) – Destination path. Existing directories accepted.

• symlinks (bool) – If True, copy symlinks rather than their contents.

• ignore (callable) – A callable that takes a path and directory listing, returning the files
within the listing to be ignored.

For more details, check out shutil.copytree() and shutil.copy2().

4.6.2 Atomic File Saving

Ideally, the road to success should never put current progress at risk. And that’s exactly why atomic_save() and
AtomicSaver exist.

Using the same API as a writable file, all output is saved to a temporary file, and when the file is closed, the old file is
replaced by the new file in a single system call, portable across all major operating systems. No more partially-written
or partially-overwritten files.

boltons.fileutils.atomic_save(dest_path, **kwargs)
A convenient interface to the AtomicSaver type. See the AtomicSaver documentation for details.

class boltons.fileutils.AtomicSaver(dest_path, **kwargs)
AtomicSaver is a configurable context manager that provides a writable file which will be moved into
place as long as no exceptions are raised within the context manager’s block. These “part files” are created in
the same directory as the destination path to ensure atomic move operations (i.e., no cross-filesystem moves
occur).

Parameters

• dest_path (str) – The path where the completed file will be written.

• overwrite (bool) – Whether to overwrite the destination file if it exists at completion
time. Defaults to True.

• file_perms (int) – Integer representation of file permissions for the newly-created file.
Defaults are, when the destination path already exists, to copy the permissions from the
previous file, or if the file did not exist, to respect the user’s configured umask, usually
resulting in octal 0644 or 0664.

• part_file (str) – Name of the temporary part_file. Defaults to dest_path + .part.
Note that this argument is just the filename, and not the full path of the part file. To guarantee
atomic saves, part files are always created in the same directory as the destination path.

24 Chapter 4. Section listing

https://docs.python.org/2.7/library/shutil.html#shutil.copytree
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/shutil.html#shutil.copytree
https://docs.python.org/2.7/library/shutil.html#shutil.copy2
https://docs.python.org/2/reference/compound_stmts.html#with
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://en.wikipedia.org/wiki/Umask
https://docs.python.org/2.7/library/functions.html#str

boltons Documentation, Release 18.0.1

• overwrite_part (bool) – Whether to overwrite the part_file, should it exist at setup
time. Defaults to False, which results in an OSError being raised on pre-existing part
files. Be careful of setting this to True in situations when multiple threads or processes
could be writing to the same part file.

• rm_part_on_exc (bool) – Remove part_file on exception cases. Defaults to True, but
False can be useful for recovery in some cases. Note that resumption is not automatic and
by default an OSError is raised if the part_file exists.

Practically, the AtomicSaver serves a few purposes:

• Avoiding overwriting an existing, valid file with a partially written one.

• Providing a reasonable guarantee that a part file only has one writer at a time.

• Optional recovery of partial data in failure cases.

boltons.fileutils.atomic_rename(src, dst, overwrite=False)
Rename src to dst, replacing dst if *overwrite is True

boltons.fileutils.replace(src, dst)
Similar to os.replace() in Python 3.3+, this function will atomically create or replace the file at path dst
with the file at path src.

On Windows, this function uses the ReplaceFile API for maximum possible atomicity on a range of filesystems.

4.6.3 File Permissions

Linux, BSD, Mac OS, and other Unix-like operating systems all share a simple, foundational file permission structure
that is commonly complicit in accidental access denial, as well as file leakage. FilePerms was built to increase
clarity and cut down on permission-related accidents when working with files from Python code.

class boltons.fileutils.FilePerms(user=”, group=”, other=”)
The FilePerms type is used to represent standard POSIX filesystem permissions:

• Read

• Write

• Execute

Across three classes of user:

• Owning (u)ser

• Owner’s (g)roup

• Any (o)ther user

This class assists with computing new permissions, as well as working with numeric octal 777-style and rwx-
style permissions. Currently it only considers the bottom 9 permission bits; it does not support sticky bits or
more advanced permission systems.

Parameters

• user (str) – A string in the ‘rwx’ format, omitting characters for which owning user’s
permissions are not provided.

• group (str) – A string in the ‘rwx’ format, omitting characters for which owning group
permissions are not provided.

• other (str) – A string in the ‘rwx’ format, omitting characters for which owning
other/world permissions are not provided.

4.6. fileutils - Filesystem helpers 25

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

boltons Documentation, Release 18.0.1

There are many ways to use FilePerms:

>>> FilePerms(user='rwx', group='xrw', other='wxr') # note character order
FilePerms(user='rwx', group='rwx', other='rwx')
>>> int(FilePerms('r', 'r', ''))
288
>>> oct(288)[-3:] # XXX Py3k
'440'

See also the FilePerms.from_int() and FilePerms.from_path() classmethods for useful alterna-
tive ways to construct FilePerms objects.

4.6.4 Miscellaneous

class boltons.fileutils.DummyFile(path, mode=’r’, buffering=None)

4.7 formatutils - str.format() toolbox

PEP 3101 introduced the str.format() method, and what would later be called “new-style” string formatting. For
the sake of explicit correctness, it is probably best to refer to Python’s dual string formatting capabilities as bracket-
style and percent-style. There is overlap, but one does not replace the other.

• Bracket-style is more pluggable, slower, and uses a method.

• Percent-style is simpler, faster, and uses an operator.

Bracket-style formatting brought with it a much more powerful toolbox, but it was far from a full one. str.
format() uses more powerful syntax, but the tools and idioms for working with that syntax are not well-developed
nor well-advertised.

formatutils adds several functions for working with bracket-style format strings:

• DeferredValue: Defer fetching or calculating a value until format time.

• get_format_args(): Parse the positional and keyword arguments out of a format string.

• tokenize_format_str(): Tokenize a format string into literals and BaseFormatField objects.

• construct_format_field_str(): Assists in progammatic construction of format strings.

• infer_positional_format_args(): Converts anonymous references in 2.7+ format strings to explicit
positional arguments suitable for usage with Python 2.6.

class boltons.formatutils.DeferredValue(func, cache_value=True)
DeferredValue is a wrapper type, used to defer computing values which would otherwise be expensive
to stringify and format. This is most valuable in areas like logging, where one would not want to waste time
formatting a value for a log message which will subsequently be filtered because the message’s log level was
DEBUG and the logger was set to only emit CRITICAL messages.

The :class:DeferredValue is initialized with a callable that takes no arguments and returns the value, which
can be of any type. By default DeferredValue only calls that callable once, and future references will get a
cached value. This behavior can be disabled by setting cache_value to False.

Parameters

• func (function) – A callable that takes no arguments and computes the value being
represented.

26 Chapter 4. Section listing

https://www.python.org/dev/peps/pep-3101/
https://docs.python.org/2.7/library/stdtypes.html#str.format
https://docs.python.org/2.7/library/stdtypes.html#str.format
https://docs.python.org/2.7/library/stdtypes.html#str.format
https://docs.python.org/2/library/string.html#format-string-syntax
https://docs.python.org/2/library/string.html#string-formatting

boltons Documentation, Release 18.0.1

• cache_value (bool) – Whether subsequent usages will call func again. Defaults to
True.

>>> import sys
>>> dv = DeferredValue(lambda: len(sys._current_frames()))
>>> output = "works great in all {0} threads!".format(dv)

PROTIP: To keep lines shorter, use: from formatutils import DeferredValue as DV

get_value()
Computes, optionally caches, and returns the value of the func. If get_value() has been called before,
a cached value may be returned depending on the cache_value option passed to the constructor.

boltons.formatutils.get_format_args(fstr)
Turn a format string into two lists of arguments referenced by the format string. One is positional arguments,
and the other is named arguments. Each element of the list includes the name and the nominal type of the field.

>>> get_format_args(“{noun} is {1:d} years old{punct}”) # ([(1, <type ‘int’>)], [(‘noun’, <type ‘str’>),
(‘punct’, <type ‘str’>)])

XXX: Py3k >>> get_format_args(“{noun} is {1:d} years old{punct}”) == ([(1, int)], [(‘noun’, str), (‘punct’,
str)]) True

boltons.formatutils.tokenize_format_str(fstr, resolve_pos=True)
Takes a format string, turns it into a list of alternating string literals and BaseFormatField tokens. By
default, also infers anonymous positional references into explict, numbered positional references. To disable
this behavior set resolve_pos to False.

boltons.formatutils.construct_format_field_str(fname, fspec, conv)
Constructs a format field string from the field name, spec, and conversion character (fname, fspec, conv).
See Python String Formatting for more info.

boltons.formatutils.infer_positional_format_args(fstr)
Takes format strings with anonymous positional arguments, (e.g., “{}” and {:d}), and converts them into num-
bered ones for explicitness and compatibility with 2.6.

Returns a string with the inferred positional arguments.

class boltons.formatutils.BaseFormatField(fname, fspec=”, conv=None)
A class representing a reference to an argument inside of a bracket-style format string. For instance, in
"{greeting}, world!", there is a field named “greeting”.

These fields can have many options applied to them. See the Python docs on Format String Syntax for the full
details.

fstr
The current state of the field in string format.

set_conv(conv)
There are only two built-in converters: s and r. They are somewhat rare and appearlike "{ref!r}".

set_fname(fname)
Set the field name.

set_fspec(fspec)
Set the field spec.

4.7. formatutils - str.format() toolbox 27

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2/library/string.html#string-formatting

boltons Documentation, Release 18.0.1

4.8 funcutils - functools fixes

Python’s built-in functools module builds several useful utilities on top of Python’s first-class function support.
funcutils generally stays in the same vein, adding to and correcting Python’s standard metaprogramming facilities.

4.8.1 Decoration

Decorators are among Python’s most elegant and succinct language features, and boltons adds one special function to
make them even more powerful.

boltons.funcutils.wraps(func, injected=None, **kw)
Modeled after the built-in functools.wraps(), this function is used to make your decorator’s wrapper
functions reflect the wrapped function’s:

• Name

• Documentation

• Module

• Signature

The built-in functools.wraps() copies the first three, but does not copy the signature. This version of
wraps can copy the inner function’s signature exactly, allowing seamless usage and introspection. Usage
is identical to the built-in version:

>>> from boltons.funcutils import wraps
>>>
>>> def print_return(func):
... @wraps(func)
... def wrapper(*args, **kwargs):
... ret = func(*args, **kwargs)
... print(ret)
... return ret
... return wrapper
...
>>> @print_return
... def example():
... '''docstring'''
... return 'example return value'
>>>
>>> val = example()
example return value
>>> example.__name__
'example'
>>> example.__doc__
'docstring'

In addition, the boltons version of wraps supports modifying the outer signature based on the inner signature. By
passing a list of injected argument names, those arguments will be removed from the outer wrapper’s signature,
allowing your decorator to provide arguments that aren’t passed in.

Parameters

• func (function) – The callable whose attributes are to be copied.

• injected (list) – An optional list of argument names which should not appear in the
new wrapper’s signature.

28 Chapter 4. Section listing

https://docs.python.org/2.7/library/functools.html#module-functools
https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators
https://docs.python.org/2.7/library/functools.html#functools.wraps
https://docs.python.org/2.7/library/functools.html#functools.wraps
https://docs.python.org/2.7/library/inspect.html#module-inspect

boltons Documentation, Release 18.0.1

• update_dict (bool) – Whether to copy other, non-standard attributes of func over to
the wrapper. Defaults to True.

• inject_to_varkw (bool) – Ignore missing arguments when a **kwargs-type catch-
all is present. Defaults to True.

For more in-depth wrapping of functions, see the FunctionBuilder type, on which wraps was built.

4.8.2 Function construction

Functions are so key to programming in Python that there will even arise times where Python functions must be
constructed in Python. Thankfully, Python is a dynamic enough to make this possible. Boltons makes it easy.

class boltons.funcutils.FunctionBuilder(name, **kw)
The FunctionBuilder type provides an interface for programmatically creating new functions, either based on
existing functions or from scratch.

Values are passed in at construction or set as attributes on the instance. For creating a new function based of an
existing one, see the from_func() classmethod. At any point, get_func() can be called to get a newly
compiled function, based on the values configured.

>>> fb = FunctionBuilder('return_five', doc='returns the integer 5',
... body='return 5')
>>> f = fb.get_func()
>>> f()
5
>>> fb.varkw = 'kw'
>>> f_kw = fb.get_func()
>>> f_kw(ignored_arg='ignored_val')
5

Note that function signatures themselves changed quite a bit in Python 3, so several arguments are only applica-
ble to FunctionBuilder in Python 3. Except for name, all arguments to the constructor are keyword arguments.

Parameters

• name (str) – Name of the function.

• doc (str) – Docstring for the function, defaults to empty.

• module (str) – Name of the module from which this function was imported. Defaults to
None.

• body (str) – String version of the code representing the body of the function. Defaults to
'pass', which will result in a function which does nothing and returns None.

• args (list) – List of argument names, defaults to empty list, denoting no arguments.

• varargs (str) – Name of the catch-all variable for positional arguments. E.g., “args” if
the resultant function is to have *args in the signature. Defaults to None.

• varkw (str) – Name of the catch-all variable for keyword arguments. E.g., “kwargs” if
the resultant function is to have **kwargs in the signature. Defaults to None.

• defaults (dict) – A mapping of argument names to default values.

• kwonlyargs (list) – Argument names which are only valid as keyword arguments.
Python 3 only.

• kwonlydefaults (dict) – A mapping, same as normal defaults, but only for the kwonl-
yargs. Python 3 only.

4.8. funcutils - functools fixes 29

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://en.wikipedia.org/wiki/Docstring#Python
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict

boltons Documentation, Release 18.0.1

• annotations (dict) – Mapping of type hints and so forth. Python 3 only.

• filename (str) – The filename that will appear in tracebacks. Defaults to
“boltons.funcutils.FunctionBuilder”.

• indent (int) – Number of spaces with which to indent the function body. Values less
than 1 will result in an error.

• dict (dict) – Any other attributes which should be added to the functions compiled with
this FunctionBuilder.

All of these arguments are also made available as attributes which can be mutated as necessary.

classmethod from_func(func)
Create a new FunctionBuilder instance based on an existing function. The original function will not be
stored or modified.

get_defaults_dict()
Get a dictionary of function arguments with defaults and the respective values.

get_func(execdict=None, add_source=True, with_dict=True)
Compile and return a new function based on the current values of the FunctionBuilder.

Parameters

• execdict (dict) – The dictionary representing the scope in which the compilation
should take place. Defaults to an empty dict.

• add_source (bool) – Whether to add the source used to a special __source__ at-
tribute on the resulting function. Defaults to True.

• with_dict (bool) – Add any custom attributes, if applicable. Defaults to True.

To see an example of usage, see the implementation of wraps().

remove_arg(arg_name)
Remove an argument from this FunctionBuilder’s argument list. The resulting function will have one less
argument per call to this function.

Parameters arg_name (str) – The name of the argument to remove.

Raises a ValueError if the argument is not present.

4.8.3 Improved partial

boltons.funcutils.partial
alias of boltons.funcutils.CachedInstancePartial

class boltons.funcutils.InstancePartial
functools.partial is a huge convenience for anyone working with Python’s great first-class functions. It
allows developers to curry arguments and incrementally create simpler callables for a variety of use cases.

Unfortunately there’s one big gap in its usefulness: methods. Partials just don’t get bound as methods and
automatically handed a reference to self. The InstancePartial type remedies this by inheriting from
functools.partial and implementing the necessary descriptor protocol. There are no other differences
in implementation or usage. CachedInstancePartial, below, has the same ability, but is slightly more
efficient.

class boltons.funcutils.CachedInstancePartial
The CachedInstancePartial is virtually the same as InstancePartial, adding support for method-
usage to functools.partial, except that upon first access, it caches the bound method on the associated

30 Chapter 4. Section listing

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str

boltons Documentation, Release 18.0.1

object, speeding it up for future accesses, and bringing the method call overhead to about the same as non-
partial methods.

See the InstancePartial docstring for more details.

4.8.4 Miscellaneous metaprogramming

boltons.funcutils.copy_function(orig, copy_dict=True)
Returns a shallow copy of the function, including code object, globals, closure, etc.

>>> func = lambda: func
>>> func() is func
True
>>> func_copy = copy_function(func)
>>> func_copy() is func
True
>>> func_copy is not func
True

Parameters

• orig (function) – The function to be copied. Must be a function, not just any method
or callable.

• copy_dict (bool) – Also copy any attributes set on the function instance. Defaults to
True.

boltons.funcutils.dir_dict(obj, raise_exc=False)
Return a dictionary of attribute names to values for a given object. Unlike obj.__dict__, this function
returns all attributes on the object, including ones on parent classes.

boltons.funcutils.mro_items(type_obj)
Takes a type and returns an iterator over all class variables throughout the type hierarchy (respecting the MRO).

>>> sorted(set([k for k, v in mro_items(int) if not k.startswith('__') and 'bytes
→˓' not in k and not callable(v)]))
['denominator', 'imag', 'numerator', 'real']

4.9 gcutils - Garbage collecting tools

The Python Garbage Collector (GC) doesn’t usually get too much attention, probably because:

• Python’s reference counting effectively handles the vast majority of unused objects

• People are slowly learning to avoid implementing object.__del__()

• The collection itself strikes a good balance between simplicity and power (tunable generation sizes)

• The collector itself is fast and rarely the cause of long pauses associated with GC in other runtimes

Even so, for many applications, the time will come when the developer will need to track down:

• Circular references

• Misbehaving objects (locks, __del__())

• Memory leaks

4.9. gcutils - Garbage collecting tools 31

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2/glossary.html#term-garbage-collection
https://docs.python.org/2/glossary.html#term-reference-count
https://docs.python.org/2/glossary.html#term-reference-count
https://docs.python.org/2/library/gc.html#gc.set_threshold

boltons Documentation, Release 18.0.1

• Or just ways to shave off a couple percent of execution time

Thanks to the gc module, the GC is a well-instrumented entry point for exactly these tasks, and gcutils aims to
facilitate it further.

boltons.gcutils.get_all(type_obj, include_subtypes=True)
Get a list containing all instances of a given type. This will work for the vast majority of types out there.

>>> class Ratking(object): pass
>>> wiki, hak, sport = Ratking(), Ratking(), Ratking()
>>> len(get_all(Ratking))
3

However, there are some exceptions. For example, get_all(bool) returns an empty list because True and
False are themselves built-in and not tracked.

>>> get_all(bool)
[]

Still, it’s not hard to see how this functionality can be used to find all instances of a leaking type and track them
down further using gc.get_referrers() and gc.get_referents().

get_all() is optimized such that getting instances of user-created types is quite fast. Setting in-
clude_subtypes to Falsewill further increase performance in cases where instances of subtypes aren’t required.

Note: There are no guarantees about the state of objects returned by get_all(), especially in concurrent
environments. For instance, it is possible for an object to be in the middle of executing its __init__() and
be only partially constructed.

class boltons.gcutils.GCToggler(postcollect=False)
The GCToggler is a context-manager that allows one to safely take more control of your garbage collection
schedule. Anecdotal experience says certain object-creation-heavy tasks see speedups of around 10% by simply
doing one explicit collection at the very end, especially if most of the objects will stay resident.

Two GCTogglers are already present in the gcutils module:

• toggle_gc simply turns off GC at context entrance, and re-enables at exit

• toggle_gc_postcollect does the same, but triggers an explicit collection after re-enabling.

>>> with toggle_gc:
... x = [object() for i in range(1000)]

Between those two instances, the GCToggler type probably won’t be used much directly, but is documented
for inheritance purposes.

boltons.gcutils.toggle_gc = <boltons.gcutils.GCToggler object>
A context manager for disabling GC for a code block. See GCToggler for more details.

boltons.gcutils.toggle_gc_postcollect = <boltons.gcutils.GCToggler object>
A context manager for disabling GC for a code block, and collecting before re-enabling. See GCToggler for
more details.

4.10 ioutils - Input/output enhancements

Module ioutils implements a number of helper classes and functions which are useful when dealing with input,
output, and bytestreams in a variety of ways.

32 Chapter 4. Section listing

https://docs.python.org/2.7/library/gc.html#module-gc
https://docs.python.org/2.7/library/gc.html#gc.get_referrers
https://docs.python.org/2.7/library/gc.html#gc.get_referents

boltons Documentation, Release 18.0.1

4.10.1 Spooled Temporary Files

Spooled Temporary Files are file-like objects that start out mapped to in-memory objects, but automatically roll over to
a temporary file once they reach a certain (configurable) threshold. Unfortunately the built-in SpooledTemporaryFile
class in Python does not implement the exact API that some common classes like StringIO do. SpooledTemporaryFile
also spools all of it’s in-memory files as cStringIO instances. cStringIO instances cannot be deep-copied, and they
don’t work with the zip library either. This along with the incompatible api makes it useless for several use-cases.

To combat this but still gain the memory savings and usefulness of a true spooled file-like-object, two custom classes
have been implemented which have a compatible API.

SpooledBytesIO

class boltons.ioutils.SpooledBytesIO(max_size=5000000, dir=None)
SpooledBytesIO is a spooled file-like-object that only accepts bytes. On Python 2.x this means the ‘str’ type;
on Python 3.x this means the ‘bytes’ type. Bytes are written in and retrieved exactly as given, but it will raise
TypeErrors if something other than bytes are written.

Example:

>>> from boltons import ioutils
>>> with ioutils.SpooledBytesIO() as f:
... f.write(b"Happy IO")
... _ = f.seek(0)
... isinstance(f.getvalue(), ioutils.binary_type)
True

SpooledStringIO

class boltons.ioutils.SpooledStringIO(*args, **kwargs)
SpooledStringIO is a spooled file-like-object that only accepts unicode values. On Python 2.x this means the
‘unicode’ type and on Python 3.x this means the ‘str’ type. Values are accepted as unicode and then coerced
into utf-8 encoded bytes for storage. On retrieval, the values are returned as unicode.

Example:

>>> from boltons import ioutils
>>> with ioutils.SpooledStringIO() as f:
... f.write(u"\u2014 Hey, an emdash!")
... _ = f.seek(0)
... isinstance(f.read(), ioutils.text_type)
True

4.10.2 Examples

It’s not uncommon to find excessive usage of StringIO in older Python code. A SpooledTemporaryFile would be a
nice replacement if one wanted to reduce memory overhead, but unfortunately its api differs too much. This is a good
candidate for SpooledBytesIO as it is api compatible and thus may be used as a drop-in replacement.

Old Code:

flo = StringIO()
flo.write(gigantic_string)

4.10. ioutils - Input/output enhancements 33

boltons Documentation, Release 18.0.1

Updated:

from boltons.ioutils import SpooledBytesIO

flo = SpooledBytesIO()
flo.write(gigantic_string)

Another good use case is downloading a file from some remote location. It’s nice to keep it in memory if it’s small, but
writing a large file into memory can make servers quite grumpy. If the file being downloaded happens to be a zip file
then things are worse. You can’t use a normal SpooledTemporaryFile because it isn’t compatible. A SpooledBytesIO
instance is a good alternative. Here is a simple example using the requests library to download a zip file:

from zipfile import ZipFile

import requests
from boltons import ioutils

Using a context manager with stream=True ensures the connection is closed. See:
http://docs.python-requests.org/en/master/user/advanced/#body-content-workflow
with requests.get("http://127.0.0.1/test_file.zip", stream=True) as r:

if r.status_code == 200:
with ioutils.SpooledBytesIO() as flo:

for chunk in r.iter_content(chunk_size=64000):
flo.write(chunk)

flo.seek(0)

zip_doc = ZipFile(flo)

Print all the files in the zip
print(zip_doc.namelist())

4.10.3 Multiple Files

MultiFileReader

class boltons.ioutils.MultiFileReader(*fileobjs)
Takes a list of open files or file-like objects and provides an interface to read from them all contiguously. Like
itertools.chain(), but for reading files.

>>> mfr = MultiFileReader(BytesIO(b'ab'), BytesIO(b'cd'), BytesIO(b'e'))
>>> mfr.read(3).decode('ascii')
u'abc'
>>> mfr.read(3).decode('ascii')
u'de'

The constructor takes as many fileobjs as you hand it, and will raise a TypeError on non-file-like objects. A
ValueError is raised when file-like objects are a mix of bytes- and text-handling objects (for instance, BytesIO
and StringIO).

4.11 iterutils - itertools improvements

itertools is full of great examples of Python generator usage. However, there are still some critical gaps.
iterutils fills many of those gaps with featureful, tested, and Pythonic solutions.

34 Chapter 4. Section listing

https://docs.python.org/2.7/library/itertools.html#itertools.chain
https://docs.python.org/2.7/library/itertools.html#module-itertools

boltons Documentation, Release 18.0.1

Many of the functions below have two versions, one which returns an iterator (denoted by the *_iter naming
pattern), and a shorter-named convenience form that returns a list. Some of the following are based on examples in
itertools docs.

4.11.1 Iteration

These are generators and convenient list-producing counterparts comprising several common patterns of iteration
not present in the standard library.

boltons.iterutils.split(src, sep=None, maxsplit=None)
Splits an iterable based on a separator. Like str.split(), but for all iterables. Returns a list of lists.

>>> split(['hi', 'hello', None, None, 'sup', None, 'soap', None])
[['hi', 'hello'], ['sup'], ['soap']]

See split_iter() docs for more info.

boltons.iterutils.split_iter(src, sep=None, maxsplit=None)
Splits an iterable based on a separator, sep, a max of maxsplit times (no max by default). sep can be:

• a single value

• an iterable of separators

• a single-argument callable that returns True when a separator is encountered

split_iter() yields lists of non-separator values. A separator will never appear in the output.

>>> list(split_iter(['hi', 'hello', None, None, 'sup', None, 'soap', None]))
[['hi', 'hello'], ['sup'], ['soap']]

Note that split_iter is based on str.split(), so if sep is None, split() groups separators. If empty
lists are desired between two contiguous None values, simply use sep=[None]:

>>> list(split_iter(['hi', 'hello', None, None, 'sup', None]))
[['hi', 'hello'], ['sup']]
>>> list(split_iter(['hi', 'hello', None, None, 'sup', None], sep=[None]))
[['hi', 'hello'], [], ['sup'], []]

Using a callable separator:

>>> falsy_sep = lambda x: not x
>>> list(split_iter(['hi', 'hello', None, '', 'sup', False], falsy_sep))
[['hi', 'hello'], [], ['sup'], []]

See split() for a list-returning version.

boltons.iterutils.chunked(src, size, count=None, **kw)
Returns a list of count chunks, each with size elements, generated from iterable src. If src is not evenly divisible
by size, the final chunk will have fewer than size elements. Provide the fill keyword argument to provide a pad
value and enable padding, otherwise no padding will take place.

>>> chunked(range(10), 3)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> chunked(range(10), 3, fill=None)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]]
>>> chunked(range(10), 3, count=2)
[[0, 1, 2], [3, 4, 5]]

4.11. iterutils - itertools improvements 35

https://docs.python.org/2.7/library/stdtypes.html#str.split

boltons Documentation, Release 18.0.1

See chunked_iter() for more info.

boltons.iterutils.chunked_iter(src, size, **kw)
Generates size-sized chunks from src iterable. Unless the optional fill keyword argument is provided, iterables
not even divisible by size will have a final chunk that is smaller than size.

>>> list(chunked_iter(range(10), 3))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> list(chunked_iter(range(10), 3, fill=None))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]]

Note that fill=None in fact uses None as the fill value.

boltons.iterutils.pairwise(src)
Convenience function for calling windowed() on src, with size set to 2.

>>> pairwise(range(5))
[(0, 1), (1, 2), (2, 3), (3, 4)]
>>> pairwise([])
[]

The number of pairs is always one less than the number of elements in the iterable passed in, except on empty
inputs, which returns an empty list.

boltons.iterutils.pairwise_iter(src)
Convenience function for calling windowed_iter() on src, with size set to 2.

>>> list(pairwise_iter(range(5)))
[(0, 1), (1, 2), (2, 3), (3, 4)]
>>> list(pairwise_iter([]))
[]

The number of pairs is always one less than the number of elements in the iterable passed in, or zero, when src
is empty.

boltons.iterutils.windowed(src, size)
Returns tuples with exactly length size. If the iterable is too short to make a window of length size, no tuples are
returned. See windowed_iter() for more.

boltons.iterutils.windowed_iter(src, size)
Returns tuples with length size which represent a sliding window over iterable src.

>>> list(windowed_iter(range(7), 3))
[(0, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]

If the iterable is too short to make a window of length size, then no window tuples are returned.

>>> list(windowed_iter(range(3), 5))
[]

boltons.iterutils.unique(src, key=None)
unique() returns a list of unique values, as determined by key, in the order they first appeared in the input
iterable, src.

>>> ones_n_zeros = '11010110001010010101010'
>>> ''.join(unique(ones_n_zeros))
'10'

See unique_iter() docs for more details.

36 Chapter 4. Section listing

boltons Documentation, Release 18.0.1

boltons.iterutils.unique_iter(src, key=None)
Yield unique elements from the iterable, src, based on key, in the order in which they first appeared in src.

>>> repetitious = [1, 2, 3] * 10
>>> list(unique_iter(repetitious))
[1, 2, 3]

By default, key is the object itself, but key can either be a callable or, for convenience, a string name of the
attribute on which to uniqueify objects, falling back on identity when the attribute is not present.

>>> pleasantries = ['hi', 'hello', 'ok', 'bye', 'yes']
>>> list(unique_iter(pleasantries, key=lambda x: len(x)))
['hi', 'hello', 'bye']

4.11.2 Nested

Nested data structures are common. Yet virtually all of Python’s compact iteration tools work with flat data: list
comprehensions, map/filter, generator expressions, itertools, even other iterutils.

The functions below make working with nested iterables and other containers as succinct and powerful as Python
itself.

boltons.iterutils.remap(root, visit=<function default_visit>, enter=<function default_enter>,
exit=<function default_exit>, **kwargs)

The remap (“recursive map”) function is used to traverse and transform nested structures. Lists, tuples, sets,
and dictionaries are just a few of the data structures nested into heterogenous tree-like structures that are so
common in programming. Unfortunately, Python’s built-in ways to manipulate collections are almost all flat.
List comprehensions may be fast and succinct, but they do not recurse, making it tedious to apply quick changes
or complex transforms to real-world data.

remap goes where list comprehensions cannot.

Here’s an example of removing all Nones from some data:

>>> from pprint import pprint
>>> reviews = {'Star Trek': {'TNG': 10, 'DS9': 8.5, 'ENT': None},
... 'Babylon 5': 6, 'Dr. Who': None}
>>> pprint(remap(reviews, lambda p, k, v: v is not None))
{'Babylon 5': 6, 'Star Trek': {'DS9': 8.5, 'TNG': 10}}

Notice how both Nones have been removed despite the nesting in the dictionary. Not bad for a one-liner, and
that’s just the beginning. See this remap cookbook for more delicious recipes.

remap takes four main arguments: the object to traverse and three optional callables which determine how the
remapped object will be created.

Parameters

• root – The target object to traverse. By default, remap supports iterables like list,
tuple, dict, and set, but any object traversable by enter will work.

• visit (callable) – This function is called on every item in root. It must accept three
positional arguments, path, key, and value. path is simply a tuple of parents’ keys. visit
should return the new key-value pair. It may also return True as shorthand to keep the old
item unmodified, or False to drop the item from the new structure. visit is called after
enter, on the new parent.

4.11. iterutils - itertools improvements 37

http://sedimental.org/remap.html
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#set

boltons Documentation, Release 18.0.1

The visit function is called for every item in root, including duplicate items. For traversable
values, it is called on the new parent object, after all its children have been visited. The
default visit behavior simply returns the key-value pair unmodified.

• enter (callable) – This function controls which items in root are traversed. It accepts
the same arguments as visit: the path, the key, and the value of the current item. It returns
a pair of the blank new parent, and an iterator over the items which should be visited. If
False is returned instead of an iterator, the value will not be traversed.

The enter function is only called once per unique value. The default enter behavior support
mappings, sequences, and sets. Strings and all other iterables will not be traversed.

• exit (callable) – This function determines how to handle items once they have been
visited. It gets the same three arguments as the other functions – path, key, value – plus
two more: the blank new parent object returned from enter, and a list of the new items, as
remapped by visit.

Like enter, the exit function is only called once per unique value. The default exit be-
havior is to simply add all new items to the new parent, e.g., using list.extend()
and dict.update() to add to the new parent. Immutable objects, such as a tuple or
namedtuple, must be recreated from scratch, but use the same type as the new parent
passed back from the enter function.

• reraise_visit (bool) – A pragmatic convenience for the visit callable. When set to
False, remap ignores any errors raised by the visit callback. Items causing exceptions are
kept. See examples for more details.

remap is designed to cover the majority of cases with just the visit callable. While passing in multiple callables
is very empowering, remap is designed so very few cases should require passing more than one function.

When passing enter and exit, it’s common and easiest to build on the default behavior. Simply add from
boltons.iterutils import default_enter (or default_exit), and have your enter/exit func-
tion call the default behavior before or after your custom logic. See this example.

Duplicate and self-referential objects (aka reference loops) are automatically handled internally, as shown here.

boltons.iterutils.get_path(root, path, default=Sentinel(’_UNSET’))
Retrieve a value from a nested object via a tuple representing the lookup path.

>>> root = {'a': {'b': {'c': [[1], [2], [3]]}}}
>>> get_path(root, ('a', 'b', 'c', 2, 0))
3

The path format is intentionally consistent with that of remap().

One of get_path’s chief aims is improved error messaging. EAFP is great, but the error messages are not.

For instance, root['a']['b']['c'][2][1] gives back IndexError: list index out of
range

What went out of range where? get_path currently raises PathAccessError: could not access 2
from path ('a', 'b', 'c', 2, 1), got error: IndexError('list index out of
range',), a subclass of IndexError and KeyError.

You can also pass a default that covers the entire operation, should the lookup fail at any level.

Parameters

• root – The target nesting of dictionaries, lists, or other objects supporting __getitem__.

• path (tuple) – A list of strings and integers to be successively looked up within root.

38 Chapter 4. Section listing

https://docs.python.org/2.7/library/stdtypes.html#dict.update
https://docs.python.org/2.7/library/functions.html#bool
http://sedimental.org/remap.html#sort_all_lists
http://sedimental.org/remap.html#corner_cases

boltons Documentation, Release 18.0.1

• default – The value to be returned should any PathAccessError exceptions be
raised.

boltons.iterutils.research(root, query=<function <lambda>>, reraise=False)
The research() function uses remap() to recurse over any data nested in root, and find values which match
a given criterion, specified by the query callable.

Results are returned as a list of (path, value) pairs. The paths are tuples in the same format accepted by
get_path(). This can be useful for comparing values nested in two or more different structures.

Here’s a simple example that finds all integers:

>>> root = {'a': {'b': 1, 'c': (2, 'd', 3)}, 'e': None}
>>> res = research(root, query=lambda p, k, v: isinstance(v, int))
>>> print(sorted(res))
[(('a', 'b'), 1), (('a', 'c', 0), 2), (('a', 'c', 2), 3)]

Note how query follows the same, familiar path, key, value signature as the visit and enter func-
tions on remap(), and returns a bool.

Parameters

• root – The target object to search. Supports the same types of objects as remap(),
including list, tuple, dict, and set.

• query (callable) – The function called on every object to determine whether to include
it in the search results. The callable must accept three arguments, path, key, and value,
commonly abbreviated p, k, and v, same as enter and visit from remap().

• reraise (bool) – Whether to reraise exceptions raised by query or to simply drop the
result that caused the error.

With research() it’s easy to inspect the details of a data structure, like finding values that are at a certain
depth (using len(p)) and much more. If more advanced functionality is needed, check out the code and make
your own remap() wrapper, and consider submitting a patch!

4.11.3 Numeric

Number sequences are an obvious target of Python iteration, such as the built-in range(), xrange(), and
itertools.count(). Like the Iteration members above, these return iterators and lists, but take numeric in-
puts instead of iterables.

boltons.iterutils.backoff(start, stop, count=None, factor=2.0, jitter=False)
Returns a list of geometrically-increasing floating-point numbers, suitable for usage with exponential backoff.
Exactly like backoff_iter(), but without the 'repeat' option for count. See backoff_iter() for
more details.

>>> backoff(1, 10)
[1.0, 2.0, 4.0, 8.0, 10.0]

boltons.iterutils.backoff_iter(start, stop, count=None, factor=2.0, jitter=False)
Generates a sequence of geometrically-increasing floats, suitable for usage with exponential backoff. Starts with
start, increasing by factor until stop is reached, optionally stopping iteration once count numbers are yielded.
factor defaults to 2. In general retrying with properly-configured backoff creates a better-behaved component
for a larger service ecosystem.

>>> list(backoff_iter(1.0, 10.0, count=5))
[1.0, 2.0, 4.0, 8.0, 10.0]

(continues on next page)

4.11. iterutils - itertools improvements 39

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#set
https://docs.python.org/2.7/library/functions.html#bool
https://github.com/mahmoud/boltons/pulls
https://docs.python.org/2.7/library/functions.html#range
https://docs.python.org/2.7/library/functions.html#xrange
https://docs.python.org/2.7/library/itertools.html#itertools.count
https://en.wikipedia.org/wiki/Exponential_backoff
https://en.wikipedia.org/wiki/Exponential_backoff

boltons Documentation, Release 18.0.1

(continued from previous page)

>>> list(backoff_iter(1.0, 10.0, count=8))
[1.0, 2.0, 4.0, 8.0, 10.0, 10.0, 10.0, 10.0]
>>> list(backoff_iter(0.25, 100.0, factor=10))
[0.25, 2.5, 25.0, 100.0]

A simplified usage example:

for timeout in backoff_iter(0.25, 5.0):
try:

res = network_call()
break

except Exception as e:
log(e)
time.sleep(timeout)

An enhancement for large-scale systems would be to add variation, or jitter, to timeout values. This is done to
avoid a thundering herd on the receiving end of the network call.

Finally, for count, the special value 'repeat' can be passed to continue yielding indefinitely.

Parameters

• start (float) – Positive number for baseline.

• stop (float) – Positive number for maximum.

• count (int) – Number of steps before stopping iteration. Defaults to the number of steps
between start and stop. Pass the string, ‘repeat’, to continue iteration indefinitely.

• factor (float) – Rate of exponential increase. Defaults to 2.0, e.g., [1, 2, 4, 8, 16].

• jitter (float) – A factor between -1.0 and 1.0, used to uniformly randomize and thus
spread out timeouts in a distributed system, avoiding rhythm effects. Positive values use the
base backoff curve as a maximum, negative values use the curve as a minimum. Set to 1.0
or True for a jitter approximating Ethernet’s time-tested backoff solution. Defaults to False.

boltons.iterutils.frange(stop, start=None, step=1.0)
A range() clone for float-based ranges.

>>> frange(5)
[0.0, 1.0, 2.0, 3.0, 4.0]
>>> frange(6, step=1.25)
[0.0, 1.25, 2.5, 3.75, 5.0]
>>> frange(100.5, 101.5, 0.25)
[100.5, 100.75, 101.0, 101.25]
>>> frange(5, 0)
[]
>>> frange(5, 0, step=-1.25)
[5.0, 3.75, 2.5, 1.25]

boltons.iterutils.xfrange(stop, start=None, step=1.0)
Same as frange(), but generator-based instead of returning a list.

>>> tuple(xfrange(1, 3, step=0.75))
(1.0, 1.75, 2.5)

See frange() for more details.

40 Chapter 4. Section listing

https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#range

boltons Documentation, Release 18.0.1

4.11.4 Categorization

These functions operate on iterables, dividing into groups based on a given condition.

boltons.iterutils.bucketize(src, key=None, value_transform=None, key_filter=None)
Group values in the src iterable by the value returned by key, which defaults to bool, grouping values by
truthiness.

>>> bucketize(range(5))
{False: [0], True: [1, 2, 3, 4]}
>>> is_odd = lambda x: x % 2 == 1
>>> bucketize(range(5), is_odd)
{False: [0, 2, 4], True: [1, 3]}

Value lists are not deduplicated:

>>> bucketize([None, None, None, 'hello'])
{False: [None, None, None], True: ['hello']}

Bucketize into more than 3 groups

>>> bucketize(range(10), lambda x: x % 3)
{0: [0, 3, 6, 9], 1: [1, 4, 7], 2: [2, 5, 8]}

bucketize has a couple of advanced options useful in certain cases. value_transform can be used to modify
values as they are added to buckets, and key_filter will allow excluding certain buckets from being collected.

>>> bucketize(range(5), value_transform=lambda x: x*x)
{False: [0], True: [1, 4, 9, 16]}

>>> bucketize(range(10), key=lambda x: x % 3, key_filter=lambda k: k % 3 != 1)
{0: [0, 3, 6, 9], 2: [2, 5, 8]}

Note in some of these examples there were at most two keys, True and False, and each key present has a list
with at least one item. See partition() for a version specialized for binary use cases.

boltons.iterutils.partition(src, key=None)
No relation to str.partition(), partition is like bucketize(), but for added convenience returns
a tuple of (truthy_values, falsy_values).

>>> nonempty, empty = partition(['', '', 'hi', '', 'bye'])
>>> nonempty
['hi', 'bye']

key defaults to bool, but can be carefully overridden to use any function that returns either True or False.

>>> import string
>>> is_digit = lambda x: x in string.digits
>>> decimal_digits, hexletters = partition(string.hexdigits, is_digit)
>>> ''.join(decimal_digits), ''.join(hexletters)
('0123456789', 'abcdefABCDEF')

4.11.5 Reduction

reduce() is a powerful function, but it is also very open-ended and not always the most readable. The standard
library recognized this with the addition of sum(), all(), and any(). All these functions take a basic operator (+,
and, and or) and use the operator to turn an iterable into a single value.

4.11. iterutils - itertools improvements 41

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/stdtypes.html#str.partition
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#reduce
https://docs.python.org/2.7/library/functions.html#sum
https://docs.python.org/2.7/library/functions.html#all
https://docs.python.org/2.7/library/functions.html#any

boltons Documentation, Release 18.0.1

Functions in this category follow that same spirit, turning iterables like lists into single values:

boltons.iterutils.one(src, default=None, key=None)
Along the same lines as builtins, all() and any(), and similar to first(), one() returns the single object
in the given iterable src that evaluates to True, as determined by callable key. If unset, key defaults to bool. If
no such objects are found, default is returned. If default is not passed, None is returned.

If src has more than one object that evaluates to True, or if there is no object that fulfills such condition, return
default. It’s like an XOR over an iterable.

>>> one((True, False, False))
True
>>> one((True, False, True))
>>> one((0, 0, 'a'))
'a'
>>> one((0, False, None))
>>> one((True, True), default=False)
False
>>> bool(one(('', 1)))
True
>>> one((10, 20, 30, 42), key=lambda i: i > 40)
42

See Martín Gaitán’s original repo for further use cases.

boltons.iterutils.first(iterable, default=None, key=None)
Return first element of iterable that evaluates to True, else return None or optional default. Similar to one().

>>> first([0, False, None, [], (), 42])
42
>>> first([0, False, None, [], ()]) is None
True
>>> first([0, False, None, [], ()], default='ohai')
'ohai'
>>> import re
>>> m = first(re.match(regex, 'abc') for regex in ['b.*', 'a(.*)'])
>>> m.group(1)
'bc'

The optional key argument specifies a one-argument predicate function like that used for filter(). The key argu-
ment, if supplied, should be in keyword form. For example, finding the first even number in an iterable:

>>> first([1, 1, 3, 4, 5], key=lambda x: x % 2 == 0)
4

Contributed by Hynek Schlawack, author of the original standalone module.

boltons.iterutils.same(iterable, ref=Sentinel(’_UNSET’))
same() returns True when all values in iterable are equal to one another, or optionally a reference value, ref.
Similar to all() and any() in that it evaluates an iterable and returns a bool. same() returns True for
empty iterables.

>>> same([])
True
>>> same([1])
True
>>> same(['a', 'a', 'a'])
True
>>> same(range(20))

(continues on next page)

42 Chapter 4. Section listing

https://docs.python.org/2.7/library/functions.html#all
https://docs.python.org/2.7/library/functions.html#any
https://docs.python.org/2.7/library/functions.html#bool
https://en.wikipedia.org/wiki/Exclusive_or
https://github.com/mgaitan/one
https://github.com/hynek/first
https://docs.python.org/2.7/library/functions.html#all
https://docs.python.org/2.7/library/functions.html#any
https://docs.python.org/2.7/library/functions.html#bool

boltons Documentation, Release 18.0.1

(continued from previous page)

False
>>> same([[], []])
True
>>> same([[], []], ref='test')
False

4.11.6 Type Checks

In the same vein as the feature-checking builtin, callable().

boltons.iterutils.is_iterable(obj)
Similar in nature to callable(), is_iterable returns True if an object is iterable, False if not.

>>> is_iterable([])
True
>>> is_iterable(object())
False

boltons.iterutils.is_scalar(obj)
A near-mirror of is_iterable(). Returns False if an object is an iterable container type. Strings are
considered scalar as well, because strings are more often treated as whole values as opposed to iterables of
1-character substrings.

>>> is_scalar(object())
True
>>> is_scalar(range(10))
False
>>> is_scalar('hello')
True

boltons.iterutils.is_collection(obj)
The opposite of is_scalar(). Returns True if an object is an iterable other than a string.

>>> is_collection(object())
False
>>> is_collection(range(10))
True
>>> is_collection('hello')
False

4.12 jsonutils - JSON interactions

jsonutils aims to provide various helpers for working with JSON. Currently it focuses on providing a reliable and
intuitive means of working with JSON Lines-formatted files.

class boltons.jsonutils.JSONLIterator(file_obj, ignore_errors=False, reverse=False,
rel_seek=None)

The JSONLIterator is used to iterate over JSON-encoded objects stored in the JSON Lines format (one
object per line).

Most notably it has the ability to efficiently read from the bottom of files, making it very effective for reading
in simple append-only JSONL use cases. It also has the ability to start from anywhere in the file and ignore
corrupted lines.

4.12. jsonutils - JSON interactions 43

https://docs.python.org/2.7/library/functions.html#callable
https://docs.python.org/2.7/library/functions.html#callable
https://docs.python.org/2/glossary.html#term-iterable
http://jsonlines.org/
http://jsonlines.org/

boltons Documentation, Release 18.0.1

Parameters

• file_obj (file) – An open file object.

• ignore_errors (bool) – Whether to skip over lines that raise an error on deserialization
(json.loads()).

• reverse (bool) – Controls the direction of the iteration. Defaults to False. If set to
True and rel_seek is unset, seeks to the end of the file before iteration begins.

• rel_seek (float) – Used to preseek the start position of iteration. Set to 0.0 for the start
of the file, 1.0 for the end, and anything in between.

cur_byte_pos
A property representing where in the file the iterator is reading.

next()
Yields one dict loaded with json.loads(), advancing the file object by one line. Raises
StopIteration upon reaching the end of the file (or beginning, if reverse was set to True.

boltons.jsonutils.reverse_iter_lines(file_obj, blocksize=4096, preseek=True)
Returns an iterator over the lines from a file object, in reverse order, i.e., last line first, first line last. Uses the
file.seek() method of file objects, and is tested compatible with file objects, as well as StringIO.
StringIO.

Parameters

• file_obj (file) – An open file object. Note that reverse_iter_lines mutably
reads from the file and other functions should not mutably interact with the file object.

• blocksize (int) – The block size to pass to file.read()

• preseek (bool) – Tells the function whether or not to automatically seek to the end of the
file. Defaults to True. preseek=False is useful in cases when the file cursor is already
in position, either at the end of the file or in the middle for relative reverse line generation.

4.13 listutils - list derivatives

Python’s builtin list is a very fast and efficient sequence type, but it could be better for certain access patterns, such
as non-sequential insertion into a large lists. listutils provides a pure-Python solution to this problem.

For utilities for working with iterables and lists, check out iterutils. For the a list-based version of
collections.namedtuple, check out namedutils.

boltons.listutils.BList
alias of boltons.listutils.BarrelList

class boltons.listutils.BarrelList(iterable=None)
The BarrelList is a list subtype backed by many dynamically-scaled sublists, to provide better scaling
and random insertion/deletion characteristics. It is a subtype of the builtin list and has an identical API,
supporting indexing, slicing, sorting, etc. If application requirements call for something more performant,
consider the blist module available on PyPI.

The name comes by way of Kurt Rose, who said it reminded him of barrel shifters. Not sure how, but it’s
BList-like, so the name stuck. BList is of course a reference to B-trees.

Parameters iterable – An optional iterable of initial values for the list.

44 Chapter 4. Section listing

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/json.html#json.loads
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/json.html#json.loads
https://docs.python.org/2.7/library/stdtypes.html#file.seek
https://docs.python.org/2.7/library/stringio.html#StringIO.StringIO
https://docs.python.org/2.7/library/stringio.html#StringIO.StringIO
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/stdtypes.html#file.read
https://docs.python.org/2.7/library/functions.html#bool
https://pypi.python.org/pypi/blist
https://en.wikipedia.org/wiki/B-tree

boltons Documentation, Release 18.0.1

>>> blist = BList(xrange(100000))
>>> blist.pop(50000)
50000
>>> len(blist)
99999
>>> len(blist.lists) # how many underlying lists
8
>>> slice_idx = blist.lists[0][-1]
>>> blist[slice_idx:slice_idx + 2]
BarrelList([11637, 11638])

Slicing is supported and works just fine across list borders, returning another instance of the BarrelList.

append(item)
L.append(object) – append object to end

count(value)→ integer – return number of occurrences of value

del_slice(start, stop, step=None)

extend(iterable)
L.extend(iterable) – extend list by appending elements from the iterable

classmethod from_iterable(it)

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

insert(index, item)
L.insert(index, object) – insert object before index

iter_slice(start, stop, step=None)

pop([index])→ item – remove and return item at index (default last).
Raises IndexError if list is empty or index is out of range.

reverse()
L.reverse() – reverse IN PLACE

sort()
L.sort(cmp=None, key=None, reverse=False) – stable sort IN PLACE; cmp(x, y) -> -1, 0, 1

4.14 mathutils - Mathematical functions

This module provides useful math functions on top of Python’s built-in math module.

4.14.1 Alternative Rounding Functions

boltons.mathutils.clamp(x, lower=-inf, upper=inf)
Limit a value to a given range.

Parameters

• x (int or float) – Number to be clamped.

• lower (int or float) – Minimum value for x.

• upper (int or float) – Maximum value for x.

4.14. mathutils - Mathematical functions 45

https://docs.python.org/2.7/library/math.html#module-math
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float

boltons Documentation, Release 18.0.1

The returned value is guaranteed to be between lower and upper. Integers, floats, and other comparable types
can be mixed.

>>> clamp(1.0, 0, 5)
1.0
>>> clamp(-1.0, 0, 5)
0
>>> clamp(101.0, 0, 5)
5
>>> clamp(123, upper=5)
5

Similar to numpy’s clip function.

boltons.mathutils.ceil(x, options=None)
Return the ceiling of x. If options is set, return the smallest integer or float from options that is greater than or
equal to x.

Parameters

• x (int or float) – Number to be tested.

• options (iterable) – Optional iterable of arbitrary numbers (ints or floats).

>>> VALID_CABLE_CSA = [1.5, 2.5, 4, 6, 10, 25, 35, 50]
>>> ceil(3.5, options=VALID_CABLE_CSA)
4
>>> ceil(4, options=VALID_CABLE_CSA)
4

boltons.mathutils.floor(x, options=None)
Return the floor of x. If options is set, return the largest integer or float from options that is less than or equal to
x.

Parameters

• x (int or float) – Number to be tested.

• options (iterable) – Optional iterable of arbitrary numbers (ints or floats).

>>> VALID_CABLE_CSA = [1.5, 2.5, 4, 6, 10, 25, 35, 50]
>>> floor(3.5, options=VALID_CABLE_CSA)
2.5
>>> floor(2.5, options=VALID_CABLE_CSA)
2.5

Note: ceil() and floor() functions are based on this example using from the bisect module in the standard
library. Refer to this StackOverflow Answer for further information regarding the performance impact of this approach.

4.15 mboxutils - Unix mailbox utilities

Useful utilities for working with the mbox-formatted mailboxes. Credit to Mark Williams for these.

class boltons.mboxutils.mbox_readonlydir(path, factory=None, create=True,
maxmem=1048576)

A subclass of mailbox.mbox suitable for use with mboxs insides a read-only mail directory, e.g., /var/
mail. Otherwise the API is exactly the same as the built-in mbox.

Deletes messages via truncation, in the manner of Heirloom mailx.

46 Chapter 4. Section listing

http://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/3/library/bisect.html#searching-sorted-lists
https://docs.python.org/2.7/library/bisect.html#module-bisect
http://stackoverflow.com/a/12141511/811740
https://en.wikipedia.org/wiki/Mbox
https://docs.python.org/2.7/library/mailbox.html#mailbox.mbox
http://heirloom.sourceforge.net/mailx.html

boltons Documentation, Release 18.0.1

Parameters

• path (str) – Path to the mbox file.

• factory (type) – Message type (defaults to rfc822.Message)

• create (bool) – Create mailbox if it does not exist. (defaults to True)

• maxmem (int) – Specifies, in bytes, the largest sized mailbox to attempt to copy into mem-
ory. Larger mailboxes will be copied incrementally which is more hazardous. (defaults to
4MB)

Note: Because this truncates and rewrites parts of the mbox file, this class can corrupt your mailbox. Only use
this if you know the built-in mailbox.mbox does not work for your use case.

flush()
Write any pending changes to disk. This is called on mailbox close and is usually not called explicitly.

Note: This deletes messages via truncation. Interruptions may corrupt your mailbox.

4.16 namedutils - Lightweight containers

The namedutils module defines two lightweight container types: namedtuple and namedlist. Both are
subtypes of built-in sequence types, which are very fast and efficient. They simply add named attribute accessors for
specific indexes within themselves.

The namedtuple is identical to the built-in collections.namedtuple, with a couple of enhancements, in-
cluding a __repr__ more suitable to inheritance.

The namedlist is the mutable counterpart to the namedtuple, and is much faster and lighter-weight than full-
blown object. Consider this if you’re implementing nodes in a tree, graph, or other mutable data structure. If you
want an even skinnier approach, you’ll probably have to look to C.

boltons.namedutils.namedlist(typename, field_names, verbose=False, rename=False)
Returns a new subclass of list with named fields.

>>> Point = namedlist('Point', ['x', 'y'])
>>> Point.__doc__ # docstring for the new class
'Point(x, y)'
>>> p = Point(11, y=22) # instantiate with pos args or keywords
>>> p[0] + p[1] # indexable like a plain list
33
>>> x, y = p # unpack like a regular list
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> d = p._asdict() # convert to a dictionary
>>> d['x']
11
>>> Point(**d) # convert from a dictionary
Point(x=11, y=22)
>>> p._replace(x=100) # _replace() is like str.replace() but
→˓targets named fields
Point(x=100, y=22)

4.16. namedutils - Lightweight containers 47

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#type
https://docs.python.org/2.7/library/rfc822.html#rfc822.Message
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/mailbox.html#mailbox.mbox
https://docs.python.org/2.7/library/functions.html#object

boltons Documentation, Release 18.0.1

boltons.namedutils.namedtuple(typename, field_names, verbose=False, rename=False)
Returns a new subclass of tuple with named fields.

>>> Point = namedtuple('Point', ['x', 'y'])
>>> Point.__doc__ # docstring for the new class
'Point(x, y)'
>>> p = Point(11, y=22) # instantiate with pos args or keywords
>>> p[0] + p[1] # indexable like a plain tuple
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> d = p._asdict() # convert to a dictionary
>>> d['x']
11
>>> Point(**d) # convert from a dictionary
Point(x=11, y=22)
>>> p._replace(x=100) # _replace() is like str.replace() but
→˓targets named fields
Point(x=100, y=22)

4.17 queueutils - Priority queues

Python comes with a many great data structures, from dict to collections.deque, and no shortage of ser-
viceable algorithm implementations, from sorted() to bisect. But priority queues are curiously relegated to an
example documented in heapq. Even there, the approach presented is not full-featured and object-oriented. There
is a built-in priority queue, Queue.PriorityQueue, but in addition to its austere API, it carries the double-
edged sword of threadsafety, making it fine for multi-threaded, multi-consumer applications, but high-overhead for
cooperative/single-threaded use cases.

The queueutils module currently provides two Queue implementations: HeapPriorityQueue, based on a
heap, and SortedPriorityQueue, based on a sorted list. Both use a unified API based on BasePriortyQueue
to facilitate testing the slightly different performance characteristics on various application use cases.

>>> pq = PriorityQueue()
>>> pq.add('low priority task', 0)
>>> pq.add('high priority task', 2)
>>> pq.add('medium priority task 1', 1)
>>> pq.add('medium priority task 2', 1)
>>> len(pq)
4
>>> pq.pop()
'high priority task'
>>> pq.peek()
'medium priority task 1'
>>> len(pq)
3

boltons.queueutils.PriorityQueue
alias of boltons.queueutils.SortedPriorityQueue

class boltons.queueutils.BasePriorityQueue(**kw)
The abstract base class for the other PriorityQueues in this module. Override the _backend_type class

48 Chapter 4. Section listing

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/collections.html#collections.deque
https://docs.python.org/2.7/library/functions.html#sorted
https://docs.python.org/2.7/library/bisect.html#module-bisect
https://docs.python.org/2.7/library/heapq.html#module-heapq
https://docs.python.org/2.7/library/queue.html#Queue.PriorityQueue

boltons Documentation, Release 18.0.1

attribute, as well as the _push_entry() and _pop_entry() staticmethods for custom subclass behavior.
(Don’t forget to use staticmethod()).

Parameters priority_key (callable) – A function that takes priority as passed in by add()
and returns an integer representing the effective priority.

add(task, priority=None)
Add a task to the queue, or change the task’s priority if task is already in the queue. task can be any
hashable object, and priority defaults to 0. Higher values representing higher priority, but this behavior
can be controlled by setting priority_key in the constructor.

peek(default=_REMOVED)
Read the next value in the queue without removing it. Returns default on an empty queue, or raises
KeyError if default is not set.

pop(default=_REMOVED)
Remove and return the next value in the queue. Returns default on an empty queue, or raises KeyError
if default is not set.

remove(task)
Remove a task from the priority queue. Raises KeyError if the task is absent.

class boltons.queueutils.HeapPriorityQueue(**kw)
A priority queue inherited from BasePriorityQueue, backed by a list and based on the heapq.
heappop() and heapq.heappush() functions in the built-in heapq module.

class boltons.queueutils.SortedPriorityQueue(**kw)
A priority queue inherited from BasePriorityQueue, based on the bisect.insort() approach for
in-order insertion into a sorted list.

4.18 setutils - IndexedSet type

The set type brings the practical expressiveness of set theory to Python. It has a very rich API overall, but lacks a
couple of fundamental features. For one, sets are not ordered. On top of this, sets are not indexable, i.e, my_set[8]
will raise an TypeError. The IndexedSet type remedies both of these issues without compromising on the
excellent complexity characteristics of Python’s built-in set implementation.

class boltons.setutils.IndexedSet(other=None)
IndexedSet is a collections.MutableSet that maintains insertion order and uniqueness of inserted
elements. It’s a hybrid type, mostly like an OrderedSet, but also list-like, in that it supports indexing and
slicing.

Parameters other (iterable) – An optional iterable used to initialize the set.

>>> x = IndexedSet(list(range(4)) + list(range(8)))
>>> x
IndexedSet([0, 1, 2, 3, 4, 5, 6, 7])
>>> x - set(range(2))
IndexedSet([2, 3, 4, 5, 6, 7])
>>> x[-1]
7
>>> fcr = IndexedSet('freecreditreport.com')
>>> ''.join(fcr[:fcr.index('.')])
'frecditpo'

Standard set operators and interoperation with set are all supported:

4.18. setutils - IndexedSet type 49

https://docs.python.org/2.7/library/functions.html#staticmethod
https://docs.python.org/2.7/library/heapq.html#heapq.heappop
https://docs.python.org/2.7/library/heapq.html#heapq.heappop
https://docs.python.org/2.7/library/heapq.html#heapq.heappush
https://docs.python.org/2.7/library/heapq.html#module-heapq
https://docs.python.org/2.7/library/bisect.html#bisect.insort
https://docs.python.org/2.7/library/stdtypes.html#set
https://docs.python.org/2.7/library/collections.html#collections.MutableSet
https://docs.python.org/2.7/library/stdtypes.html#set

boltons Documentation, Release 18.0.1

>>> fcr & set('cash4gold.com')
IndexedSet(['c', 'd', 'o', '.', 'm'])

As you can see, the IndexedSet is almost like a UniqueList, retaining only one copy of a given value, in
the order it was first added. For the curious, the reason why IndexedSet does not support setting items based on
index (i.e, __setitem__()), consider the following dilemma:

my_indexed_set = [A, B, C, D]
my_indexed_set[2] = A

At this point, a set requires only one A, but a list would overwrite C. Overwriting C would change the length
of the list, meaning that my_indexed_set[2] would not be A, as expected with a list, but rather D. So, no
__setitem__().

Otherwise, the API strives to be as complete a union of the list and set APIs as possible.

add(item)→ add item to the set

clear()→ empty the set

count(val) -> count number of instances of value (0 or 1)

difference(*others)→ get a new set with elements not in others

difference_update(*others) -> discard self.intersection(*others)

discard(item) -> discard item from the set (does not raise)

classmethod from_iterable(it)→ create a set from an iterable

index(val)→ get the index of a value, raises if not present

intersection(*others)→ get a set with overlap of this and others

intersection_update(*others) -> discard self.difference(*others)

isdisjoint(other)→ return True if no overlap with other

issubset(other)→ return True if other contains this set

issuperset(other)→ return True if set contains other

iter_difference(*others)→ iterate over elements not in others

iter_intersection(*others)→ iterate over elements also in others

iter_slice(start, stop, step=None)
iterate over a slice of the set

pop(index) -> remove the item at a given index (-1 by default)

remove(item)→ remove item from the set, raises if not present

reverse()→ reverse the contents of the set in-place

sort()→ sort the contents of the set in-place

symmetric_difference(*others)→ XOR set of this and others

symmetric_difference_update(other)→ in-place XOR with other

union(*others)→ return a new set containing this set and others

update(*others)→ add values from one or more iterables

50 Chapter 4. Section listing

https://docs.python.org/2.7/library/stdtypes.html#set

boltons Documentation, Release 18.0.1

4.19 socketutils - socket wrappers

At its heart, Python can be viewed as an extension of the C programming language. Springing from the most popular
systems programming language has made Python itself a great language for systems programming. One key to success
in this domain is Python’s very serviceable socket module and its socket.socket type.

The socketutils module provides natural next steps to the socket builtin: straightforward, tested building
blocks for higher-level protocols.

The BufferedSocket wraps an ordinary socket, providing a layer of intuitive buffering for both sending and
receiving. This facilitates parsing messages from streams, i.e., all sockets with type SOCK_STREAM. The Buffered-
Socket enables receiving until the next relevant token, up to a certain size, or until the connection is closed. For all of
these, it provides consistent APIs to size limiting, as well as timeouts that are compatible with multiple concurrency
paradigms. Use it to parse the next one-off text or binary socket protocol you encounter.

This module also provides the NetstringSocket, a pure-Python implementation of the Netstring protocol, built
on top of the BufferedSocket, serving as a ready-made, production-grade example.

Special thanks to Kurt Rose for his original authorship and all his contributions on this module. Also thanks to Daniel
J. Bernstein, the original author of Netstring.

4.19.1 BufferedSocket

class boltons.socketutils.BufferedSocket(sock, timeout=_UNSET, maxsize=32768, recv-
size=_UNSET)

Mainly provides recv_until and recv_size. recv, send, sendall, and peek all function as similarly as possible to
the built-in socket API.

This type has been tested against both the built-in socket type as well as those from gevent and eventlet. It also
features support for sockets with timeouts set to 0 (aka nonblocking), provided the caller is prepared to handle
the EWOULDBLOCK exceptions.

Parameters

• sock (socket) – The connected socket to be wrapped.

• timeout (float) – The default timeout for sends and recvs, in seconds. Set to None for
no timeout, and 0 for nonblocking. Defaults to sock’s own timeout if already set, and 10
seconds otherwise.

• maxsize (int) – The default maximum number of bytes to be received into the buffer
before it is considered full and raises an exception. Defaults to 32 kilobytes.

• recvsize (int) – The number of bytes to recv for every lower-level socket.recv()
call. Defaults to maxsize.

timeout and maxsize can both be overridden on individual socket operations.

All recv methods return bytestrings (bytes) and can raise socket.error. Timeout,
ConnectionClosed, and MessageTooLong all inherit from socket.error and exist to provide better
error messages. Received bytes are always buffered, even if an exception is raised. Use BufferedSocket.
getrecvbuffer() to retrieve partial recvs.

BufferedSocket does not replace the built-in socket by any means. While the overlapping parts of the API
are kept parallel to the built-in socket.socket, BufferedSocket does not inherit from socket, and most
socket functionality is only available on the underlying socket. socket.getpeername(), socket.
getsockname(), socket.fileno(), and others are only available on the underlying socket that is
wrapped. Use the BufferedSocket.sock attribute to access it. See the examples for more information
on how to use BufferedSockets with built-in sockets.

4.19. socketutils - socket wrappers 51

https://docs.python.org/2.7/library/socket.html#module-socket
https://en.wikipedia.org/wiki/Netstring
https://github.com/doublereedkurt
https://cr.yp.to/
https://cr.yp.to/
https://cr.yp.to/proto/netstrings.txt
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/socket.html#socket.error
https://docs.python.org/2.7/library/socket.html#socket.error

boltons Documentation, Release 18.0.1

The BufferedSocket is threadsafe, but consider the semantics of your protocol before accessing a single socket
from multiple threads. Similarly, once the BufferedSocket is constructed, avoid using the underlying socket
directly. Only use it for operations unrelated to messages, e.g., socket.getpeername().

buffer(data)
Buffer data bytes for the next send operation.

close()
Closes the wrapped socket, and empties the internal buffers. The send buffer is not flushed automatically,
so if you have been calling buffer(), be sure to call flush() before calling this method. After calling
this method, future socket operations will raise socket.error.

family
A passthrough to the wrapped socket’s family. BufferedSocket supports all widely-used families, so
this read-only attribute can be one of socket.AF_INET for IP, socket.AF_INET6 for IPv6, and
socket.AF_UNIX for UDS.

fileno()
Returns the file descriptor of the wrapped socket. -1 if it has been closed on this end.

Note that this makes the BufferedSocket selectable, i.e., usable for operating system event loops without
any external libraries. Keep in mind that the operating system cannot know about data in BufferedSocket’s
internal buffer. Exercise discipline with calling recv* functions.

flush()
Send the contents of the internal send buffer.

getpeername()
Convenience function to return the remote address to which the wrapped socket is connected. See
socket.getpeername() for more details.

getrecvbuffer()
Returns the receive buffer bytestring (rbuf).

getsendbuffer()
Returns a copy of the send buffer list.

getsockname()
Convenience function to return the wrapped socket’s own address. See socket.getsockname() for
more details.

getsockopt(level, optname, buflen=None)
Convenience function passing through to the wrapped socket’s socket.getsockopt().

peek(size, timeout=_UNSET)
Returns size bytes from the socket and/or internal buffer. Bytes are retained in BufferedSocket’s internal
recv buffer. To only see bytes in the recv buffer, use getrecvbuffer().

Parameters

• size (int) – The exact number of bytes to peek at

• timeout (float) – The timeout for this operation. Can be 0 for nonblocking and None
for no timeout. Defaults to the value set in the constructor of BufferedSocket.

If the appropriate number of bytes cannot be fetched from the buffer and socket before timeout expires,
then a Timeout will be raised. If the connection is closed, a ConnectionClosed will be raised.

proto
A passthrough to the wrapped socket’s protocol. The proto attribute is very rarely used, so it’s always 0,
meaning “the default” protocol. Pretty much all the practical information is in type and family , so you
can go back to never thinking about this.

52 Chapter 4. Section listing

https://docs.python.org/2.7/library/socket.html#socket.error
https://docs.python.org/2.7/library/socket.html#socket.AF_INET
https://docs.python.org/2.7/library/socket.html#socket.AF_INET6
https://docs.python.org/2.7/library/socket.html#socket.AF_UNIX
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float

boltons Documentation, Release 18.0.1

recv(size, flags=0, timeout=_UNSET)
Returns up to size bytes, using the internal buffer before performing a single socket.recv() operation.

Parameters

• size (int) – The maximum number of bytes to receive.

• flags (int) – Kept for API compatibility with sockets. Only the default, 0, is valid.

• timeout (float) – The timeout for this operation. Can be 0 for nonblocking and None
for no timeout. Defaults to the value set in the constructor of BufferedSocket.

If the operation does not complete in timeout seconds, a Timeout is raised. Much like the built-in
socket.socket, if this method returns an empty string, then the socket is closed and recv buffer is
empty. Further calls to recv will raise socket.error.

recv_close(timeout=_UNSET, maxsize=_UNSET)
Receive until the connection is closed, up to maxsize bytes. If more than maxsize bytes are received, raises
MessageTooLong.

recv_size(size, timeout=_UNSET)
Read off of the internal buffer, then off the socket, until size bytes have been read.

Parameters

• size (int) – number of bytes to read before returning.

• timeout (float) – The timeout for this operation. Can be 0 for nonblocking and None
for no timeout. Defaults to the value set in the constructor of BufferedSocket.

If the appropriate number of bytes cannot be fetched from the buffer and socket before timeout expires,
then a Timeout will be raised. If the connection is closed, a ConnectionClosed will be raised.

recv_until(delimiter, timeout=_UNSET, maxsize=_UNSET, with_delimiter=False)
Receive until delimiter is found, maxsize bytes have been read, or timeout is exceeded.

Parameters

• delimiter (bytes) – One or more bytes to be searched for in the socket stream.

• timeout (float) – The timeout for this operation. Can be 0 for nonblocking and None
for no timeout. Defaults to the value set in the constructor of BufferedSocket.

• maxsize (int) – The maximum size for the internal buffer. Defaults to the value set in
the constructor.

• with_delimiter (bool) – Whether or not to include the delimiter in the output.
False by default, but True is useful in cases where one is simply forwarding the mes-
sages.

recv_until will raise the following exceptions:

• Timeout if more than timeout seconds expire.

• ConnectionClosed if the underlying socket is closed by the sending end.

• MessageTooLong if the delimiter is not found in the first maxsize bytes.

• socket.error if operating in nonblocking mode (timeout equal to 0), or if some unexpected socket
error occurs, such as operating on a closed socket.

send(data, flags=0, timeout=_UNSET)
Send the contents of the internal send buffer, as well as data, to the receiving end of the connection.
Returns the total number of bytes sent. If no exception is raised, all of data was sent and the internal send
buffer is empty.

4.19. socketutils - socket wrappers 53

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/socket.html#socket.error
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/socket.html#socket.error

boltons Documentation, Release 18.0.1

Parameters

• data (bytes) – The bytes to send.

• flags (int) – Kept for API compatibility with sockets. Only the default 0 is valid.

• timeout (float) – The timeout for this operation. Can be 0 for nonblocking and None
for no timeout. Defaults to the value set in the constructor of BufferedSocket.

Will raise Timeout if the send operation fails to complete before timeout. In the event of an exception,
use BufferedSocket.getsendbuffer() to see which data was unsent.

sendall(data, flags=0, timeout=_UNSET)
A passthrough to send(), retained for parallelism to the socket.socket API.

setmaxsize(maxsize)
Set the default maximum buffer size maxsize for future operations, in bytes. Does not truncate the current
buffer.

setsockopt(level, optname, value)
Convenience function passing through to the wrapped socket’s socket.setsockopt().

settimeout(timeout)
Set the default timeout for future operations, in seconds.

shutdown(how)
Convenience method which passes through to the wrapped socket’s shutdown(). Semantics vary by
platform, so no special internal handling is done with the buffers. This method exists to facilitate the
most common usage, wherein a full shutdown is followed by a close(). Developers requiring more
support, please open an issue.

type
A passthrough to the wrapped socket’s type. Valid usages should only ever see socket.SOCK_STREAM.

Exceptions

These are a few exceptions that derive from socket.error and provide clearer code and better error messages.

exception boltons.socketutils.Error
A subclass of socket.error from which all other socketutils exceptions inherit.

When using BufferedSocket and other socketutils types, generally you want to catch one of the
specific exception types below, or socket.error.

exception boltons.socketutils.Timeout(timeout, extra=”)
Inheriting from socket.timeout, Timeout is used to indicate when a socket operation did not complete
within the time specified. Raised from any of BufferedSocket’s recv methods.

exception boltons.socketutils.ConnectionClosed
Raised when receiving and the connection is unexpectedly closed from the sending end. Raised from
BufferedSocket’s peek(), recv_until(), and recv_size(), and never from its recv() or
recv_close().

exception boltons.socketutils.MessageTooLong(bytes_read=None, delimiter=None)
Raised from BufferedSocket.recv_until() and BufferedSocket.recv_closed()when more
than maxsize bytes are read without encountering the delimiter or a closed connection, respectively.

54 Chapter 4. Section listing

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://github.com/mahmoud/boltons/issues
https://docs.python.org/2.7/library/socket.html#socket.SOCK_STREAM
https://docs.python.org/2.7/library/socket.html#socket.error
https://docs.python.org/2.7/library/socket.html#socket.error
https://docs.python.org/2.7/library/socket.html#socket.error
https://docs.python.org/2.7/library/socket.html#socket.timeout

boltons Documentation, Release 18.0.1

4.19.2 Netstring

class boltons.socketutils.NetstringSocket(sock, timeout=10, maxsize=32768)
Reads and writes using the netstring protocol.

More info: https://en.wikipedia.org/wiki/Netstring Even more info: http://cr.yp.to/proto/netstrings.txt

Nestring Exceptions

These are a few higher-level exceptions for Netstring connections.

exception boltons.socketutils.NetstringProtocolError
Base class for all of socketutils’ Netstring exception types.

exception boltons.socketutils.NetstringInvalidSize(msg)
NetstringInvalidSize is raised when the :-delimited size prefix of the message does not contain a valid integer.

Message showing valid size:

5:hello,

Here the 5 is the size. Anything in this prefix position that is not parsable as a Python integer (i.e., int) will
raise this exception.

exception boltons.socketutils.NetstringMessageTooLong(size, maxsize)
NetstringMessageTooLong is raised when the size prefix contains a valid integer, but that integer is larger than
the NetstringSocket’s configured maxsize.

When this exception is raised, it’s recommended to simply close the connection instead of trying to recover.

4.20 statsutils - Statistics fundamentals

statsutils provides tools aimed primarily at descriptive statistics for data analysis, such as mean() (average),
median(), variance(), and many others,

The Stats type provides all the main functionality of the statsutils module. A Stats object wraps a given
dataset, providing all statistical measures as property attributes. These attributes cache their results, which allows
efficient computation of multiple measures, as many measures rely on other measures. For example, relative standard
deviation (Stats.rel_std_dev) relies on both the mean and standard deviation. The Stats object caches those
results so no rework is done.

The Stats type’s attributes have module-level counterparts for convenience when the computation reuse advantages
do not apply.

>>> stats = Stats(range(42))
>>> stats.mean
20.5
>>> mean(range(42))
20.5

Statistics is a large field, and statsutils is focused on a few basic techniques that are useful in software. The
following is a brief introduction to those techniques. For a more in-depth introduction, Statistics for Software, an
article I wrote on the topic. It introduces key terminology vital to effective usage of statistics.

4.20. statsutils - Statistics fundamentals 55

https://en.wikipedia.org/wiki/Netstring
http://cr.yp.to/proto/netstrings.txt
https://docs.python.org/2.7/library/functions.html#int
https://www.paypal-engineering.com/2016/04/11/statistics-for-software/

boltons Documentation, Release 18.0.1

4.20.1 Statistical moments

Python programmers are probably familiar with the concept of the mean or average, which gives a rough quantitiative
middle value by which a sample can be can be generalized. However, the mean is just the first of four moment-based
measures by which a sample or distribution can be measured.

The four Standardized moments are:

1. Mean - mean() - theoretical middle value

2. Variance - variance() - width of value dispersion

3. Skewness - skewness() - symmetry of distribution

4. Kurtosis - kurtosis() - “peakiness” or “long-tailed”-ness

For more information check out the Moment article on Wikipedia.

Keep in mind that while these moments can give a bit more insight into the shape and distribution of data, they do not
guarantee a complete picture. Wildly different datasets can have the same values for all four moments, so generalize
wisely.

4.20.2 Robust statistics

Moment-based statistics are notorious for being easily skewed by outliers. The whole field of robust statistics aims to
mitigate this dilemma. statsutils also includes several robust statistical methods:

• Median - The middle value of a sorted dataset

• Trimean - Another robust measure of the data’s central tendency

• Median Absolute Deviation (MAD) - A robust measure of variability, a natural counterpart to variance().

• Trimming - Reducing a dataset to only the middle majority of data is a simple way of making other estimators
more robust.

4.20.3 Online and Offline Statistics

Unrelated to computer networking, online statistics involve calculating statistics in a streaming fashion, without all the
data being available. The Stats type is meant for the more traditional offline statistics when all the data is available.
For pure-Python online statistics accumulators, look at the Lithoxyl system instrumentation package.

class boltons.statsutils.Stats(data, default=0.0, use_copy=True, is_sorted=False)
The Stats type is used to represent a group of unordered statistical datapoints for calculations such as mean,
median, and variance.

Parameters

• data (list) – List or other iterable containing numeric values.

• default (float) – A value to be returned when a given statistical measure is not defined.
0.0 by default, but float('nan') is appropriate for stricter applications.

• use_copy (bool) – By default Stats objects copy the initial data into a new list to avoid
issues with modifications. Pass False to disable this behavior.

• is_sorted (bool) – Presorted data can skip an extra sorting step for a little speed boost.
Defaults to False.

56 Chapter 4. Section listing

https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Standardized_moment
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis
https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Trimean
https://en.wikipedia.org/wiki/Median_absolute_deviation
https://en.wikipedia.org/wiki/Trimmed_estimator
https://en.wikipedia.org/wiki/Online_algorithm
https://en.wikipedia.org/wiki/Streaming_algorithm
https://github.com/mahmoud/lithoxyl
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool

boltons Documentation, Release 18.0.1

clear_cache()
Stats objects automatically cache intermediary calculations that can be reused. For instance, access-
ing the std_dev attribute after the variance attribute will be significantly faster for medium-to-large
datasets.

If you modify the object by adding additional data points, call this function to have the cached statistics
recomputed.

count
The number of items in this Stats object. Returns the same as len() on a Stats object, but provided for
pandas terminology parallelism.

describe(quantiles=None, format=None)
Provides standard summary statistics for the data in the Stats object, in one of several convenient formats.

Parameters

• quantiles (list) – A list of numeric values to use as quantiles in the resulting sum-
mary. All values must be 0.0-1.0, with 0.5 representing the median. Defaults to [0.25,
0.5, 0.75], representing the standard quartiles.

• format (str) – Controls the return type of the function, with one of three valid values:
"dict" gives back a dict with the appropriate keys and values. "list" is a list of
key-value pairs in an order suitable to pass to an OrderedDict or HTML table. "text"
converts the values to text suitable for printing, as seen below.

Here is the information returned by a default describe, as presented in the "text" format:

>>> stats = Stats(range(1, 8))
>>> print(stats.describe(format='text'))
count: 7
mean: 4.0
std_dev: 2.0
mad: 2.0
min: 1
0.25: 2.5
0.5: 4
0.75: 5.5
max: 7

For more advanced descriptive statistics, check out my blog post on the topic Statistics for Software.

format_histogram(bins=None, **kw)
Produces a textual histogram of the data, using fixed-width bins, allowing for simple visualization, even in
console environments.

>>> data = list(range(20)) + list(range(5, 15)) + [10]
>>> print(Stats(data).format_histogram())
0.0: 5 ################################
4.4: 8 ###
8.9: 11 ###
→˓#
13.3: 5 ################################
17.8: 2 #############

In this histogram, five values are between 0.0 and 4.4, eight are between 4.4 and 8.9, and two values lie
between 17.8 and the max.

You can specify the number of bins, or provide a list of bin boundaries themselves. If no bins are provided,
as in the example above, Freedman’s algorithm for bin selection is used.

4.20. statsutils - Statistics fundamentals 57

https://docs.python.org/2.7/library/functions.html#len
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://www.paypal-engineering.com/2016/04/11/statistics-for-software/
https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule

boltons Documentation, Release 18.0.1

Parameters

• bins (int) – Maximum number of bins for the histogram. Also accepts a list of floating-
point bin boundaries. If the minimum boundary is still greater than the minimum value in
the data, that boundary will be implicitly added. Defaults to the bin boundaries returned
by Freedman’s algorithm.

• bin_digits (int) – Number of digits to round each bin to. Note that bins are always
rounded down to avoid clipping any data. Defaults to 1.

• width (int) – integer number of columns in the longest line in the histogram. Defaults
to console width on Python 3.3+, or 80 if that is not available.

• format_bin (callable) – Called on each bin to create a label for the final output.
Use this function to add units, such as “ms” for milliseconds.

Should you want something more programmatically reusable, see the get_histogram_counts()
method, the output of is used by format_histogram. The describe() method is another useful summa-
rization method, albeit less visual.

get_histogram_counts(bins=None, **kw)
Produces a list of (bin, count) pairs comprising a histogram of the Stats object’s data, using fixed-
width bins. See Stats.format_histogram() for more details.

Parameters

• bins (int) – maximum number of bins, or list of floating-point bin boundaries. Defaults
to the output of Freedman’s algorithm.

• bin_digits (int) – Number of digits used to round down the bin boundaries. Defaults
to 1.

The output of this method can be stored and/or modified, and then passed to
statsutils.format_histogram_counts() to achieve the same text formatting as the
format_histogram() method. This can be useful for snapshotting over time.

get_quantile(q)
Get a quantile from the dataset. Quantiles are floating point values between 0.0 and 1.0, with 0.0
representing the minimum value in the dataset and 1.0 representing the maximum. 0.5 represents the
median:

>>> Stats(range(100)).get_quantile(0.5)
49.5

get_zscore(value)
Get the z-score for value in the group. If the standard deviation is 0, 0 inf or -inf will be returned to indicate
whether the value is equal to, greater than or below the group’s mean.

iqr
Inter-quartile range (IQR) is the difference between the 75th percentile and 25th percentile. IQR is a
robust measure of dispersion, like standard deviation, but safer to compare between datasets, as it is less
influenced by outliers.

kurtosis
Indicates how much data is in the tails of the distribution. The result is always positive, with the normal
“bell-curve” distribution having a kurtosis of 3.

http://en.wikipedia.org/wiki/Kurtosis

See the module docstring for more about statistical moments.

58 Chapter 4. Section listing

https://docs.python.org/2.7/library/functions.html#int
https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
http://en.wikipedia.org/wiki/Kurtosis

boltons Documentation, Release 18.0.1

mad
Median Absolute Deviation is a robust measure of statistical dispersion: http://en.wikipedia.org/wiki/
Median_absolute_deviation

max
The maximum value present in the data.

mean
The arithmetic mean, or “average”. Sum of the values divided by the number of values.

median
The median is either the middle value or the average of the two middle values of a sample. Compared to
the mean, it’s generally more resilient to the presence of outliers in the sample.

median_abs_dev
Median Absolute Deviation is a robust measure of statistical dispersion: http://en.wikipedia.org/wiki/
Median_absolute_deviation

min
The minimum value present in the data.

pearson_type

rel_std_dev
Standard deviation divided by the absolute value of the average.

http://en.wikipedia.org/wiki/Relative_standard_deviation

skewness
Indicates the asymmetry of a curve. Positive values mean the bulk of the values are on the left side of the
average and vice versa.

http://en.wikipedia.org/wiki/Skewness

See the module docstring for more about statistical moments.

std_dev
Standard deviation. Square root of the variance.

trim_relative(amount=0.15)
A utility function used to cut a proportion of values off each end of a list of values. This has the effect of
limiting the effect of outliers.

Parameters amount (float) – A value between 0.0 and 0.5 to trim off of each side of the
data.

trimean
The trimean is a robust measure of central tendency, like the median, that takes the weighted average of
the median and the upper and lower quartiles.

variance
Variance is the average of the squares of the difference between each value and the mean.

boltons.statsutils.describe(data, quantiles=None, format=None)
A convenience function to get standard summary statistics useful for describing most data. See Stats.
describe() for more details.

>>> print(describe(range(7), format='text'))
count: 7
mean: 3.0
std_dev: 2.0
mad: 2.0

(continues on next page)

4.20. statsutils - Statistics fundamentals 59

http://en.wikipedia.org/wiki/Median_absolute_deviation
http://en.wikipedia.org/wiki/Median_absolute_deviation
http://en.wikipedia.org/wiki/Median_absolute_deviation
http://en.wikipedia.org/wiki/Median_absolute_deviation
http://en.wikipedia.org/wiki/Relative_standard_deviation
http://en.wikipedia.org/wiki/Skewness
https://docs.python.org/2.7/library/functions.html#float

boltons Documentation, Release 18.0.1

(continued from previous page)

min: 0
0.25: 1.5
0.5: 3
0.75: 4.5
max: 6

See Stats.format_histogram() for another very useful summarization that uses textual visualization.

boltons.statsutils.format_histogram_counts(bin_counts, width=None, format_bin=None)
The formatting logic behind Stats.format_histogram(), which takes the output of Stats.
get_histogram_counts(), and passes them to this function.

Parameters

• bin_counts (list) – A list of bin values to counts.

• width (int) – Number of character columns in the text output, defaults to 80 or console
width in Python 3.3+.

• format_bin (callable) – Used to convert bin values into string labels.

boltons.statsutils.iqr(data, default=0.0)
Inter-quartile range (IQR) is the difference between the 75th percentile and 25th percentile. IQR is a robust
measure of dispersion, like standard deviation, but safer to compare between datasets, as it is less influenced by
outliers.

>>> iqr([1, 2, 3, 4, 5])
2
>>> iqr(range(1001))
500

boltons.statsutils.kurtosis(data, default=0.0)
Indicates how much data is in the tails of the distribution. The result is always positive, with the normal “bell-
curve” distribution having a kurtosis of 3.

http://en.wikipedia.org/wiki/Kurtosis

See the module docstring for more about statistical moments.

>>> kurtosis(range(9))
1.99125

With a kurtosis of 1.99125, [0, 1, 2, 3, 4, 5, 6, 7, 8] is more centrally distributed than the normal curve.

boltons.statsutils.mean(data, default=0.0)
The arithmetic mean, or “average”. Sum of the values divided by the number of values.

>>> mean(range(20))
9.5
>>> mean(list(range(19)) + [949]) # 949 is an arbitrary outlier
56.0

boltons.statsutils.median(data, default=0.0)
The median is either the middle value or the average of the two middle values of a sample. Compared to the
mean, it’s generally more resilient to the presence of outliers in the sample.

>>> median([2, 1, 3])
2
>>> median(range(97))

(continues on next page)

60 Chapter 4. Section listing

https://docs.python.org/2.7/library/functions.html#int
http://en.wikipedia.org/wiki/Kurtosis

boltons Documentation, Release 18.0.1

(continued from previous page)

48
>>> median(list(range(96)) + [1066]) # 1066 is an arbitrary outlier
48

boltons.statsutils.median_abs_dev(data, default=0.0)
Median Absolute Deviation is a robust measure of statistical dispersion: http://en.wikipedia.org/wiki/Median_
absolute_deviation

>>> median_abs_dev(range(97))
24.0

boltons.statsutils.pearson_type(data, default=0.0)

boltons.statsutils.rel_std_dev(data, default=0.0)
Standard deviation divided by the absolute value of the average.

http://en.wikipedia.org/wiki/Relative_standard_deviation

>>> print('%1.3f' % rel_std_dev(range(97)))
0.583

boltons.statsutils.skewness(data, default=0.0)
Indicates the asymmetry of a curve. Positive values mean the bulk of the values are on the left side of the average
and vice versa.

http://en.wikipedia.org/wiki/Skewness

See the module docstring for more about statistical moments.

>>> skewness(range(97)) # symmetrical around 48.0
0.0
>>> left_skewed = skewness(list(range(97)) + list(range(10)))
>>> right_skewed = skewness(list(range(97)) + list(range(87, 97)))
>>> round(left_skewed, 3), round(right_skewed, 3)
(0.114, -0.114)

boltons.statsutils.std_dev(data, default=0.0)
Standard deviation. Square root of the variance.

>>> std_dev(range(97))
28.0

boltons.statsutils.trimean(data, default=0.0)
The trimean is a robust measure of central tendency, like the median, that takes the weighted average of the
median and the upper and lower quartiles.

>>> trimean([2, 1, 3])
2.0
>>> trimean(range(97))
48.0
>>> trimean(list(range(96)) + [1066]) # 1066 is an arbitrary outlier
48.0

boltons.statsutils.variance(data, default=0.0)
Variance is the average of the squares of the difference between each value and the mean.

>>> variance(range(97))
784.0

4.20. statsutils - Statistics fundamentals 61

http://en.wikipedia.org/wiki/Median_absolute_deviation
http://en.wikipedia.org/wiki/Median_absolute_deviation
http://en.wikipedia.org/wiki/Relative_standard_deviation
http://en.wikipedia.org/wiki/Skewness

boltons Documentation, Release 18.0.1

4.21 strutils - Text manipulation

So much practical programming involves string manipulation, which Python readily accomodates. Still, there are
dozens of basic and common capabilities missing from the standard library, several of them provided by strutils.

boltons.strutils.camel2under(camel_string)
Converts a camelcased string to underscores. Useful for turning a class name into a function name.

>>> camel2under('BasicParseTest')
'basic_parse_test'

boltons.strutils.under2camel(under_string)
Converts an underscored string to camelcased. Useful for turning a function name into a class name.

>>> under2camel('complex_tokenizer')
'ComplexTokenizer'

boltons.strutils.slugify(text, delim=’_’, lower=True, ascii=False)
A basic function that turns text full of scary characters (i.e., punctuation and whitespace), into a relatively safe
lowercased string separated only by the delimiter specified by delim, which defaults to _.

The ascii convenience flag will asciify() the slug if you require ascii-only slugs.

>>> slugify('First post! Hi!!!!~1 ')
'first_post_hi_1'

>>> slugify("Kurt Gödel's pretty cool.", ascii=True) == b'kurt_goedel_s_
→˓pretty_cool'
True

boltons.strutils.split_punct_ws(text)
While str.split() will split on whitespace, split_punct_ws() will split on punctuation and whites-
pace. This used internally by slugify(), above.

>>> split_punct_ws('First post! Hi!!!!~1 ')
['First', 'post', 'Hi', '1']

boltons.strutils.unit_len(sized_iterable, unit_noun=’item’)
Returns a plain-English description of an iterable’s len(), conditionally pluralized with cardinalize(),
detailed below.

>>> print(unit_len(range(10), 'number'))
10 numbers
>>> print(unit_len('aeiou', 'vowel'))
5 vowels
>>> print(unit_len([], 'worry'))
No worries

boltons.strutils.ordinalize(number, ext_only=False)
Turns number into its cardinal form, i.e., 1st, 2nd, 3rd, 4th, etc. If the last character isn’t a digit, it returns the
string value unchanged.

Parameters

• number (int or str) – Number to be cardinalized.

• ext_only (bool) – Whether to return only the suffix. Default False.

62 Chapter 4. Section listing

https://docs.python.org/2.7/library/stdtypes.html#str.split
https://docs.python.org/2.7/library/functions.html#len
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

boltons Documentation, Release 18.0.1

>>> print(ordinalize(1))
1st
>>> print(ordinalize(3694839230))
3694839230th
>>> print(ordinalize('hi'))
hi
>>> print(ordinalize(1515))
1515th

boltons.strutils.cardinalize(unit_noun, count)
Conditionally pluralizes a singular word unit_noun if count is not one, preserving case when possible.

>>> vowels = 'aeiou'
>>> print(len(vowels), cardinalize('vowel', len(vowels)))
5 vowels
>>> print(3, cardinalize('Wish', 3))
3 Wishes

boltons.strutils.pluralize(word)
Semi-intelligently converts an English word from singular form to plural, preserving case pattern.

>>> pluralize('friend')
'friends'
>>> pluralize('enemy')
'enemies'
>>> pluralize('Sheep')
'Sheep'

boltons.strutils.singularize(word)
Semi-intelligently converts an English plural word to its singular form, preserving case pattern.

>>> singularize('records')
'record'
>>> singularize('FEET')
'FOOT'

boltons.strutils.asciify(text, ignore=False)
Converts a unicode or bytestring, text, into a bytestring with just ascii characters. Performs basic deaccenting
for all you Europhiles out there.

Also, a gentle reminder that this is a utility, primarily meant for slugification. Whenever possible, make your
application work with unicode, not against it.

Parameters

• text (str or unicode) – The string to be asciified.

• ignore (bool) – Configures final encoding to ignore remaining unasciified unicode in-
stead of replacing it.

>>> asciify('Beyoncé') == b'Beyonce'
True

boltons.strutils.is_ascii(text)
Check if a unicode or bytestring, text, is composed of ascii characters only. Raises ValueError if argument
is not text.

Parameters text (str or unicode) – The string to be checked.

4.21. strutils - Text manipulation 63

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str

boltons Documentation, Release 18.0.1

>>> is_ascii('Beyoncé')
False
>>> is_ascii('Beyonce')
True

boltons.strutils.is_uuid(obj, version=4)
Check the argument is either a valid UUID object or string.

Parameters

• obj (object) – The test target. Strings and UUID objects supported.

• version (int) – The target UUID version, set to 0 to skip version check.

>>> is_uuid('e682ccca-5a4c-4ef2-9711-73f9ad1e15ea')
True
>>> is_uuid('0221f0d9-d4b9-11e5-a478-10ddb1c2feb9')
False
>>> is_uuid('0221f0d9-d4b9-11e5-a478-10ddb1c2feb9', version=1)
True

boltons.strutils.html2text(html)
Strips tags from HTML text, returning markup-free text. Also, does a best effort replacement of entities like
“ ”

>>> r = html2text(u'Test &(\u0394ημώ)
→˓')
>>> r == u'Test &(\u0394\u03b7\u03bc\u03ce)'
True

boltons.strutils.strip_ansi(text)
Strips ANSI escape codes from text. Useful for the occasional time when a log or redirected output accidentally
captures console color codes and the like.

>>> strip_ansi('[0m[1;36mart[46;34mÜ')
'art'

The test above is an excerpt from ANSI art on sixteencolors.net. This function does not interpret or render ANSI
art, but you can do so with ansi2img or escapes.js.

boltons.strutils.bytes2human(nbytes, ndigits=0)
Turns an integer value of nbytes into a human readable format. Set ndigits to control how many digits after the
decimal point should be shown (default 0).

>>> bytes2human(128991)
'126K'
>>> bytes2human(100001221)
'95M'
>>> bytes2human(0, 2)
'0.00B'

boltons.strutils.find_hashtags(string)
Finds and returns all hashtags in a string, with the hashmark removed. Supports full-width hashmarks for Asian
languages and does not false-positive on URL anchors.

>>> find_hashtags('#atag http://asite/#ananchor')
['atag']

64 Chapter 4. Section listing

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#int
http://sixteencolors.net
http://www.bedroomlan.org/projects/ansi2img
https://github.com/atdt/escapes.js

boltons Documentation, Release 18.0.1

find_hashtags also works with unicode hashtags.

boltons.strutils.a10n(string)
That thing where “internationalization” becomes “i18n”, what’s it called? Abbreviation? Oh wait, no: a10n.
(It’s actually a form of numeronym.)

>>> a10n('abbreviation')
'a10n'
>>> a10n('internationalization')
'i18n'
>>> a10n('')
''

boltons.strutils.gunzip_bytes(bytestring)
The gzip module is great if you have a file or file-like object, but what if you just have bytes. StringIO is
one possibility, but it’s often faster, easier, and simpler to just use this one-liner. Use this tried-and-true utility
function to decompress gzip from bytes.

>>> gunzip_bytes(_EMPTY_GZIP_BYTES) == b''
True
>>> gunzip_bytes(_NON_EMPTY_GZIP_BYTES).rstrip() == b'bytesahoy!'
True

boltons.strutils.iter_splitlines(text)
Like str.splitlines(), but returns an iterator of lines instead of a list. Also similar to file.next(),
as that also lazily reads and yields lines from a file.

This function works with a variety of line endings, but as always, be careful when mixing line endings within a
file.

>>> list(iter_splitlines('\nhi\nbye\n'))
['', 'hi', 'bye', '']
>>> list(iter_splitlines('\r\nhi\rbye\r\n'))
['', 'hi', 'bye', '']
>>> list(iter_splitlines(''))
[]

boltons.strutils.indent(text, margin, newline=’\n’, key=<type ’bool’>)
The missing counterpart to the built-in textwrap.dedent().

Parameters

• text (str) – The text to indent.

• margin (str) – The string to prepend to each line.

• newline (str) – The newline used to rejoin the lines (default: \n)

• key (callable) – Called on each line to determine whether to indent it. Default: bool,
to ensure that empty lines do not get whitespace added.

boltons.strutils.escape_shell_args(args, sep=’ ’, style=None)
Returns an escaped version of each string in args, according to style.

Parameters

• args (list) – A list of arguments to escape and join together

• sep (str) – The separator used to join the escaped arguments.

4.21. strutils - Text manipulation 65

http://en.wikipedia.org/wiki/Numeronym
https://docs.python.org/2.7/library/gzip.html#module-gzip
https://docs.python.org/2.7/library/stdtypes.html#str.splitlines
https://docs.python.org/2.7/library/stdtypes.html#file.next
https://docs.python.org/2.7/library/textwrap.html#textwrap.dedent
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str

boltons Documentation, Release 18.0.1

• style (str) – The style of escaping to use. Can be one of cmd or sh, geared toward
Windows and Linux/BSD/etc., respectively. If style is None, then it is picked according to
the system platform.

See args2cmd() and args2sh() for details and example output for each style.

boltons.strutils.args2cmd(args, sep=’ ’)
Return a shell-escaped string version of args, separated by sep, using the same rules as the Microsoft C runtime.

>>> print(args2cmd(['aa', '[bb]', "cc'cc", 'dd"dd']))
aa [bb] cc'cc dd\"dd

As you can see, escaping is through backslashing and not quoting, and double quotes are the only special
character. See the comment in the code for more details. Based on internal code from the subprocess
module.

boltons.strutils.args2sh(args, sep=’ ’)
Return a shell-escaped string version of args, separated by sep, based on the rules of sh, bash, and other shells
in the Linux/BSD/MacOS ecosystem.

>>> print(args2sh(['aa', '[bb]', "cc'cc", 'dd"dd']))
aa '[bb]' 'cc'"'"'cc' 'dd"dd'

As you can see, arguments with no special characters are not escaped, arguments with special characters are
quoted with single quotes, and single quotes themselves are quoted with double quotes. Double quotes are
handled like any other special character.

Based on code from the pipes/shlex modules. Also note that shlex and argparse have functions to split
and parse strings escaped in this manner.

boltons.strutils.parse_int_list(range_string, delim=’, ’, range_delim=’-’)
Returns a sorted list of positive integers based on range_string. Reverse of format_int_list().

Parameters

• range_string (str) – String of comma separated positive integers or ranges (e.g.
‘1,2,4-6,8’). Typical of a custom page range string used in printer dialogs.

• delim (char) – Defaults to ‘,’. Separates integers and contiguous ranges of integers.

• range_delim (char) – Defaults to ‘-‘. Indicates a contiguous range of integers.

>>> parse_int_list('1,3,5-8,10-11,15')
[1, 3, 5, 6, 7, 8, 10, 11, 15]

boltons.strutils.format_int_list(int_list, delim=’, ’, range_delim=’-’, delim_space=False)
Returns a sorted range string from a list of positive integers (int_list). Contiguous ranges of integers are collapsed
to min and max values. Reverse of parse_int_list().

Parameters

• int_list (list) – List of positive integers to be converted into a range string (e.g.
[1,2,4,5,6,8]).

• delim (char) – Defaults to ‘,’. Separates integers and contiguous ranges of integers.

• range_delim (char) – Defaults to ‘-‘. Indicates a contiguous range of integers.

• delim_space (bool) – Defaults to False. If True, adds a space after all delim char-
acters.

66 Chapter 4. Section listing

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/subprocess.html#module-subprocess
https://docs.python.org/2.7/library/pipes.html#module-pipes
https://docs.python.org/2.7/library/shlex.html#module-shlex
https://docs.python.org/2.7/library/shlex.html#module-shlex
https://docs.python.org/2.7/library/argparse.html#module-argparse
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool

boltons Documentation, Release 18.0.1

>>> format_int_list([1,3,5,6,7,8,10,11,15])
'1,3,5-8,10-11,15'

4.22 tableutils - 2D data structure

If there is one recurring theme in boltons, it is that Python has excellent datastructures that constitute a good
foundation for most quick manipulations, as well as building applications. However, Python usage has grown much
faster than builtin data structure power. Python has a growing need for more advanced general-purpose data structures
which behave intuitively.

The Table class is one example. When handed one- or two-dimensional data, it can provide useful, if basic, text and
HTML renditions of small to medium sized data. It also heuristically handles recursive data of various formats (lists,
dicts, namedtuples, objects).

For more advanced Table-style manipulation check out the pandas DataFrame.

class boltons.tableutils.Table(data=None, headers=_MISSING, metadata=None)
This Table class is meant to be simple, low-overhead, and extensible. Its most common use would be for
translation between in-memory data structures and serialization formats, such as HTML and console-ready text.

As such, it stores data in list-of-lists format, and does not copy lists passed in. It also reserves the right to
modify those lists in a “filling” process, whereby short lists are extended to the width of the table (usually
determined by number of headers). This greatly reduces overhead and processing/validation that would have to
occur otherwise.

General description of headers behavior:

Headers describe the columns, but are not part of the data, however, if the headers argument is omitted, Ta-
ble tries to infer header names from the data. It is possible to have a table with no headers, just pass in
headers=None.

Supported inputs:

• list of list objects

• dict (list/single)

• object (list/single)

• collections.namedtuple (list/single)

• TODO: DB API cursor?

• TODO: json

Supported outputs:

• HTML

• Pretty text (also usable as GF Markdown)

• TODO: CSV

• TODO: json

• TODO: json lines

To minimize resident size, the Table data is stored as a list of lists.

extend(data)
Append the given data to the end of the Table.

4.22. tableutils - 2D data structure 67

http://pandas.pydata.org/
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#object

boltons Documentation, Release 18.0.1

classmethod from_data(data, headers=_MISSING, max_depth=1, **kwargs)
Create a Table from any supported data, heuristically selecting how to represent the data in Table format.

Parameters

• data (object) – Any object or iterable with data to be imported to the Table.

• headers (iterable) – An iterable of headers to be matched to the data. If not explic-
itly passed, headers will be guessed for certain datatypes.

• max_depth (int) – The level to which nested Tables should be created (default: 1).

• _data_type (InputType subclass) – For advanced use cases, do not guess the
type of the input data, use this data type instead.

classmethod from_dict(data, headers=_MISSING, max_depth=1, metadata=None)
Create a Table from a dict. Operates the same as from_data(), but forces interpretation of the data
as a Mapping.

classmethod from_list(data, headers=_MISSING, max_depth=1, metadata=None)
Create a Table from a list. Operates the same as from_data(), but forces the interpretation of the
data as a Sequence.

classmethod from_object(data, headers=_MISSING, max_depth=1, metadata=None)
Create a Table from an object. Operates the same as from_data(), but forces the interpretation of
the data as an object. May be useful for some dict and list subtypes.

get_cell_html(value)
Called on each value in an HTML table. By default it simply escapes the HTML. Override this method to
add additional conditions and behaviors, but take care to ensure the final output is HTML escaped.

to_html(orientation=None, wrapped=True, with_headers=True, with_newlines=True,
with_metadata=False, max_depth=1)

Render this Table to HTML. Configure the structure of Table HTML by subclassing and overriding
html* class attributes.

Parameters

• orientation (str) – one of ‘auto’, ‘horizontal’, or ‘vertical’ (or the first letter of any
of those). Default ‘auto’.

• wrapped (bool) – whether or not to include the wrapping ‘<table></table>’ tags. De-
fault True, set to False if appending multiple Table outputs or an otherwise customized
HTML wrapping tag is needed.

• with_newlines (bool) – Set to True if output should include added newlines to
make the HTML more readable. Default False.

• with_metadata (bool/str) – Set to True if output should be preceded with a Table
of preset metadata, if it exists. Set to special value 'bottom' if the metadata Table
HTML should come after the main HTML output.

• max_depth (int) – Indicate how deeply to nest HTML tables before simply reverting
to repr()-ing the nested data.

Returns A text string of the HTML of the rendered table.

to_text(with_headers=True, maxlen=None)
Get the Table’s textual representation. Only works well for Tables with non-recursive data.

Parameters

• with_headers (bool) – Whether to include a header row at the top.

• maxlen (int) – Max length of data in each cell.

68 Chapter 4. Section listing

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#repr
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int

boltons Documentation, Release 18.0.1

4.23 tbutils - Tracebacks and call stacks

One of the oft-cited tenets of Python is that it is better to ask forgiveness than permission. That is, there are many
cases where it is more inclusive and correct to handle exceptions than spend extra lines and execution time checking for
conditions. This philosophy makes good exception handling features all the more important. Unfortunately Python’s
traceback module is woefully behind the times.

The tbutils module provides two disparate but complementary featuresets:

1. With ExceptionInfo and TracebackInfo, the ability to extract, construct, manipulate, format, and seri-
alize exceptions, tracebacks, and callstacks.

2. With ParsedException, the ability to find and parse tracebacks from captured output such as logs and
stdout.

There is also the ContextualTracebackInfo variant of TracebackInfo, which includes much more infor-
mation from each frame of the callstack, including values of locals and neighboring lines of code.

class boltons.tbutils.ExceptionInfo(exc_type, exc_msg, tb_info)
An ExceptionInfo object ties together three main fields suitable for representing an instance of an exception: The
exception type name, a string representation of the exception itself (the exception message), and information
about the traceback (stored as a TracebackInfo object).

These fields line up with sys.exc_info(), but unlike the values returned by that function, ExceptionInfo
does not hold any references to the real exception or traceback. This property makes it suitable for serialization
or long-term retention, without worrying about formatting pitfalls, circular references, or leaking memory.

Parameters

• exc_type (str) – The exception type name.

• exc_msg (str) – String representation of the exception value.

• tb_info (TracebackInfo) – Information about the stack trace of the exception.

Like the TracebackInfo, ExceptionInfo is most commonly instantiated from one of its classmethods:
from_exc_info() or from_current().

classmethod from_current()
Create an ExceptionInfo object from the current exception being handled, by way of sys.
exc_info(). Will raise an exception if no exception is currently being handled.

classmethod from_exc_info(exc_type, exc_value, traceback)
Create an ExceptionInfo object from the exception’s type, value, and traceback, as returned by sys.
exc_info(). See also from_current().

get_formatted()
Returns a string formatted in the traditional Python built-in style observable when an exception is not
caught. In other words, mimics traceback.format_exception().

tb_info_type
Override this in inherited types to control the TracebackInfo type used

alias of TracebackInfo

to_dict()
Get a dict representation of the ExceptionInfo, suitable for JSON serialization.

class boltons.tbutils.TracebackInfo(frames)
The TracebackInfo class provides a basic representation of a stack trace, be it from an exception being handled
or just part of normal execution. It is basically a wrapper around a list of Callpoint objects representing
frames.

4.23. tbutils - Tracebacks and call stacks 69

https://docs.python.org/2.7/library/traceback.html#module-traceback
https://docs.python.org/2.7/library/sys.html#sys.exc_info
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/sys.html#sys.exc_info
https://docs.python.org/2.7/library/sys.html#sys.exc_info
https://docs.python.org/2.7/library/sys.html#sys.exc_info
https://docs.python.org/2.7/library/sys.html#sys.exc_info
https://docs.python.org/2.7/library/traceback.html#traceback.format_exception
https://docs.python.org/2.7/library/stdtypes.html#dict

boltons Documentation, Release 18.0.1

Parameters frames (list) – A list of frame objects in the stack.

Note: TracebackInfo can represent both exception tracebacks and non-exception tracebacks (aka
stack traces). As a result, there is no TracebackInfo.from_current(), as that would be ambigu-
ous. Instead, call TracebackInfo.from_frame() without the frame argument for a stack trace, or
TracebackInfo.from_traceback() without the tb argument for an exception traceback.

callpoint_type
alias of Callpoint

classmethod from_dict(d)
Complements TracebackInfo.to_dict().

classmethod from_frame(frame=None, level=1, limit=None)
Create a new TracebackInfo frame by recurring up in the stack a max of limit times. If frame is unset, get
the frame from sys._getframe() using level.

Parameters

• frame (types.FrameType) – frame object from sys._getframe() or elsewhere.
Defaults to result of sys.get_frame().

• level (int) – If frame is unset, the desired frame is this many levels up the stack from
the invocation of this method. Default 1 (i.e., caller of this method).

• limit (int) – max number of parent frames to extract (defaults to sys.
tracebacklimit)

classmethod from_traceback(tb=None, limit=None)
Create a new TracebackInfo from the traceback tb by recurring up in the stack a max of limit times. If tb
is unset, get the traceback from the currently handled exception. If no exception is being handled, raise a
ValueError.

Parameters

• frame (types.TracebackType) – traceback object from sys.exc_info() or
elsewhere. If absent or set to None, defaults to sys.exc_info()[2], and raises a
ValueError if no exception is currently being handled.

• limit (int) – max number of parent frames to extract (defaults to sys.
tracebacklimit)

get_formatted()
Returns a string as formatted in the traditional Python built-in style observable when an exception is not
caught. In other words, mimics traceback.format_tb() and traceback.format_stack().

to_dict()
Returns a dict with a list of Callpoint frames converted to dicts.

class boltons.tbutils.Callpoint(module_name, module_path, func_name, lineno, lasti,
line=None)

The Callpoint is a lightweight object used to represent a single entry in the code of a call stack. It stores the
code-related metadata of a given frame. Available attributes are the same as the parameters below.

Parameters

• func_name (str) – the function name

• lineno (int) – the line number

• module_name (str) – the module name

70 Chapter 4. Section listing

https://docs.python.org/2.7/library/sys.html#sys._getframe
https://docs.python.org/2.7/library/sys.html#sys._getframe
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/sys.html#sys.tracebacklimit
https://docs.python.org/2.7/library/sys.html#sys.tracebacklimit
https://docs.python.org/2.7/library/sys.html#sys.exc_info
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/sys.html#sys.tracebacklimit
https://docs.python.org/2.7/library/sys.html#sys.tracebacklimit
https://docs.python.org/2.7/library/traceback.html#traceback.format_tb
https://docs.python.org/2.7/library/traceback.html#traceback.format_stack
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str

boltons Documentation, Release 18.0.1

• module_path (str) – the filesystem path of the module

• lasti (int) – the index of bytecode execution

• line (str) – the single-line code content (if available)

classmethod from_current(level=1)
Creates a Callpoint from the location of the calling function.

classmethod from_frame(frame)
Create a Callpoint object from data extracted from the given frame.

classmethod from_tb(tb)
Create a Callpoint from the traceback of the current exception. Main difference with from_frame() is
that lineno and lasti come from the traceback, which is to say the line that failed in the try block, not
the line currently being executed (in the except block).

tb_frame_str()
Render the Callpoint as it would appear in a standard printed Python traceback. Returns a string with
filename, line number, function name, and the actual code line of the error on up to two lines.

to_dict()
Get a dict copy of the Callpoint. Useful for serialization.

class boltons.tbutils.ContextualExceptionInfo(exc_type, exc_msg, tb_info)
The ContextualTracebackInfo type is a TracebackInfo subtype that uses the ContextualCallpoint
as its frame-representing primitive.

It carries with it most of the exception information required to recreate the widely recognizable “500” page for
debugging Django applications.

tb_info_type
alias of ContextualTracebackInfo

class boltons.tbutils.ContextualTracebackInfo(frames)
The ContextualTracebackInfo type is a TracebackInfo subtype that is used by
ContextualExceptionInfo and uses the ContextualCallpoint as its frame-representing
primitive.

callpoint_type
alias of ContextualCallpoint

class boltons.tbutils.ContextualCallpoint(*a, **kw)
The ContextualCallpoint is a Callpoint subtype with the exact same API and storing two additional values:

1. repr() outputs for local variables from the Callpoint’s scope

2. A number of lines before and after the Callpoint’s line of code

The ContextualCallpoint is used by the ContextualTracebackInfo.

classmethod from_frame(frame)
Identical to Callpoint.from_frame()

classmethod from_tb(tb)
Identical to Callpoint.from_tb()

to_dict()
Same principle as Callpoint.to_dict(), but with the added contextual values. With
ContextualCallpoint.to_dict(), each frame will now be represented like:

4.23. tbutils - Tracebacks and call stacks 71

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#repr

boltons Documentation, Release 18.0.1

{'func_name': 'print_example',
'lineno': 0,
'module_name': 'example_module',
'module_path': '/home/example/example_module.pyc',
'lasti': 0,
'line': 'print "example"',
'locals': {'variable': '"value"'},
'pre_lines': ['variable = "value"'],
'post_lines': []}

The locals dictionary and line lists are copies and can be mutated freely.

boltons.tbutils.print_exception(etype, value, tb, limit=None, file=None)
Print exception up to ‘limit’ stack trace entries from ‘tb’ to ‘file’.

This differs from print_tb() in the following ways: (1) if traceback is not None, it prints a header “Traceback
(most recent call last):”; (2) it prints the exception type and value after the stack trace; (3) if type is SyntaxError
and value has the appropriate format, it prints the line where the syntax error occurred with a caret on the next
line indicating the approximate position of the error.

class boltons.tbutils.ParsedException(exc_type_name, exc_msg, frames=None)
Stores a parsed traceback and exception as would be typically output by sys.excepthook() or
traceback.print_exception().

classmethod from_string(tb_str)
Parse a traceback and exception from the text tb_str. This text is expected to have been decoded, otherwise
it will be interpreted as UTF-8.

This method does not search a larger body of text for tracebacks. If the first line of the text passed does
not match one of the known patterns, a ValueError will be raised. This method will ignore trailing text
after the end of the first traceback.

Parameters tb_str (str) – The traceback text (unicode or UTF-8 bytes)

source_file
The file path of module containing the function that raised the exception, or None if not available.

to_dict()
Get a copy as a JSON-serializable dict.

to_string()
Formats the exception and its traceback into the standard format, as returned by the traceback module.

ParsedException.from_string(text).to_string() should yield text.

4.24 timeutils - datetime additions

Python’s datetime module provides some of the most complex and powerful primitives in the Python standard
library. Time is nontrivial, but thankfully its support is first-class in Python. dateutils provides some additional
tools for working with time.

Additionally, timeutils provides a few basic utilities for working with timezones in Python. The Python datetime
module’s documentation describes how to create a datetime-compatible tzinfo subtype. It even provides a few
examples.

The following module defines usable forms of the timezones in those docs, as well as a couple other useful ones, UTC
(aka GMT) and LocalTZ (representing the local timezone as configured in the operating system). For timezones
beyond these, as well as a higher degree of accuracy in corner cases, check out pytz and ‘dateutil‘_.

72 Chapter 4. Section listing

https://docs.python.org/2.7/library/sys.html#sys.excepthook
https://docs.python.org/2.7/library/traceback.html#traceback.print_exception
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/datetime.html#module-datetime
https://docs.python.org/2.7/library/datetime.html#module-datetime
https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/datetime.html#datetime.tzinfo
https://pypi.python.org/pypi/pytz

boltons Documentation, Release 18.0.1

boltons.timeutils.daterange(start, stop, step=1, inclusive=False)
In the spirit of range() and xrange(), the daterange generator that yields a sequence of date objects,
starting at start, incrementing by step, until stop is reached.

When inclusive is True, the final date may be stop, if step falls evenly on it. By default, step is one day. See
details below for many more details.

Parameters

• start (datetime.date) – The starting date The first value in the sequence.

• stop (datetime.date) – The stopping date. By default not included in return. Can be
None to yield an infinite sequence.

• step (int) – The value to increment start by to reach stop. Can be an int number of
days, a datetime.timedelta, or a tuple of integers, (year, month, day). Positive and
negative step values are supported.

• inclusive (bool) – Whether or not the stop date can be returned. stop is only returned
when a step falls evenly on it.

>>> christmas = date(year=2015, month=12, day=25)
>>> boxing_day = date(year=2015, month=12, day=26)
>>> new_year = date(year=2016, month=1, day=1)
>>> for day in daterange(christmas, new_year):
... print(repr(day))
datetime.date(2015, 12, 25)
datetime.date(2015, 12, 26)
datetime.date(2015, 12, 27)
datetime.date(2015, 12, 28)
datetime.date(2015, 12, 29)
datetime.date(2015, 12, 30)
datetime.date(2015, 12, 31)
>>> for day in daterange(christmas, boxing_day):
... print(repr(day))
datetime.date(2015, 12, 25)
>>> for day in daterange(date(2017, 5, 1), date(2017, 8, 1),
... step=(0, 1, 0), inclusive=True):
... print(repr(day))
datetime.date(2017, 5, 1)
datetime.date(2017, 6, 1)
datetime.date(2017, 7, 1)
datetime.date(2017, 8, 1)

Be careful when using stop=None, as this will yield an infinite sequence of dates.

boltons.timeutils.isoparse(iso_str)
Parses the limited subset of ISO8601-formatted time strings as returned by datetime.datetime.
isoformat().

>>> epoch_dt = datetime.utcfromtimestamp(0)
>>> iso_str = epoch_dt.isoformat()
>>> print(iso_str)
1970-01-01T00:00:00
>>> isoparse(iso_str)
datetime.datetime(1970, 1, 1, 0, 0)

>>> utcnow = datetime.utcnow()
>>> utcnow == isoparse(utcnow.isoformat())
True

4.24. timeutils - datetime additions 73

https://docs.python.org/2.7/library/functions.html#range
https://docs.python.org/2.7/library/functions.html#xrange
https://docs.python.org/2.7/library/datetime.html#datetime.date
https://docs.python.org/2.7/library/datetime.html#datetime.date
https://docs.python.org/2.7/library/datetime.html#datetime.date
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/datetime.html#datetime.timedelta
https://docs.python.org/2.7/library/functions.html#bool
https://en.wikipedia.org/wiki/ISO_8601
https://docs.python.org/2.7/library/datetime.html#datetime.datetime.isoformat
https://docs.python.org/2.7/library/datetime.html#datetime.datetime.isoformat

boltons Documentation, Release 18.0.1

For further datetime parsing, see the iso8601 package for strict ISO parsing and ‘dateutil‘_ package for loose
parsing and more.

boltons.timeutils.parse_timedelta(text)
Robustly parses a short text description of a time period into a datetime.timedelta. Supports weeks,
days, hours, minutes, and seconds, with or without decimal points:

Parameters text (str) – Text to parse.

Returns datetime.timedelta

Raises ValueError – on parse failure.

>>> parse_td('1d 2h 3.5m 0s') == timedelta(days=1, seconds=7410)
True

Also supports full words and whitespace.

>>> parse_td('2 weeks 1 day') == timedelta(days=15)
True

Negative times are supported, too:

>>> parse_td('-1.5 weeks 3m 20s') == timedelta(days=-11, seconds=43400)
True

boltons.timeutils.strpdate(string, format)
Parse the date string according to the format in format. Returns a date object. Internally, datetime.
strptime() is used to parse the string and thus conversion specifiers for time fields (e.g. %H) may be
provided; these will be parsed but ignored.

Parameters

• string (str) – The date string to be parsed.

• format (str) – The strptime-style date format string.

Returns datetime.date

>>> strpdate('2016-02-14', '%Y-%m-%d')
datetime.date(2016, 2, 14)
>>> strpdate('26/12 (2015)', '%d/%m (%Y)')
datetime.date(2015, 12, 26)
>>> strpdate('20151231 23:59:59', '%Y%m%d %H:%M:%S')
datetime.date(2015, 12, 31)
>>> strpdate('20160101 00:00:00.001', '%Y%m%d %H:%M:%S.%f')
datetime.date(2016, 1, 1)

boltons.timeutils.total_seconds(td)
For those with older versions of Python, a pure-Python implementation of Python 2.7’s total_seconds().

Parameters td (datetime.timedelta) – The timedelta to convert to seconds.

Returns total number of seconds

Return type float

>>> td = timedelta(days=4, seconds=33)
>>> total_seconds(td)
345633.0

74 Chapter 4. Section listing

https://pypi.python.org/pypi/iso8601
https://docs.python.org/2.7/library/datetime.html#datetime.timedelta
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/2.7/library/datetime.html#datetime.timedelta.total_seconds
https://docs.python.org/2.7/library/datetime.html#datetime.timedelta
https://docs.python.org/2.7/library/functions.html#float

boltons Documentation, Release 18.0.1

boltons.timeutils.dt_to_timestamp(dt)
Converts from a datetime object to an integer timestamp, suitable interoperation with time.time() and
other Epoch-based timestamps.

>>> abs(round(time.time() - dt_to_timestamp(datetime.utcnow()), 2))
0.0

dt_to_timestamp supports both timezone-aware and naïve datetime objects. Note that it assumes naïve
datetime objects are implied UTC, such as those generated with datetime.datetime.utcnow(). If your
datetime objects are local time, such as those generated with datetime.datetime.now(), first convert
it using the datetime.datetime.replace() method with tzinfo= LocalTZ object in this module,
then pass the result of that to dt_to_timestamp.

boltons.timeutils.relative_time(d, other=None, ndigits=0)
Get a string representation of the difference between two datetime objects or one datetime and the current
time. Handles past and future times.

Parameters

• d (datetime) – The first datetime object.

• other (datetime) – An optional second datetime object. If unset, defaults to the current
time as determined datetime.utcnow().

• ndigits (int) – The number of decimal digits to round to, defaults to 0.

Returns A short English-language string.

>>> now = datetime.utcnow()
>>> relative_time(now, ndigits=1)
'0 seconds ago'
>>> relative_time(now - timedelta(days=1, seconds=36000), ndigits=1)
'1.4 days ago'
>>> relative_time(now + timedelta(days=7), now, ndigits=1)
'1 week from now'

boltons.timeutils.decimal_relative_time(d, other=None, ndigits=0, cardinalize=True)
Get a tuple representing the relative time difference between two datetime objects or one datetime and
now.

Parameters

• d (datetime) – The first datetime object.

• other (datetime) – An optional second datetime object. If unset, defaults to the current
time as determined datetime.utcnow().

• ndigits (int) – The number of decimal digits to round to, defaults to 0.

• cardinalize (bool) – Whether to pluralize the time unit if appropriate, defaults to
True.

Returns

A tuple of the float difference and respective unit of time, pluralized if appropriate and car-
dinalize is set to True.

Return type (float, str)

Unlike relative_time(), this method’s return is amenable to localization into other languages and custom
phrasing and formatting.

4.24. timeutils - datetime additions 75

https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/time.html#time.time
https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/datetime.html#datetime.datetime.utcnow
https://docs.python.org/2.7/library/datetime.html#datetime.datetime.now
https://docs.python.org/2.7/library/datetime.html#datetime.datetime.replace
https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#str

boltons Documentation, Release 18.0.1

>>> now = datetime.utcnow()
>>> decimal_relative_time(now - timedelta(days=1, seconds=3600), now)
(1.0, 'day')
>>> decimal_relative_time(now - timedelta(seconds=0.002), now, ndigits=5)
(0.002, 'seconds')
>>> decimal_relative_time(now, now - timedelta(days=900), ndigits=1)
(-2.5, 'years')

4.24.1 General timezones

By default, datetime.datetime objects are “naïve”, meaning they lack attached timezone information. These
objects can be useful for many operations, but many operations require timezone-aware datetimes.

The two most important timezones in programming are Coordinated Universal Time (UTC) and the local timezone of
the host running your code. Boltons provides two datetime.tzinfo subtypes for working with them:

timeutils.UTC = ConstantTZInfo(name='UTC', offset=datetime.timedelta(0))

boltons.timeutils.LocalTZ = LocalTZInfo()
The LocalTZInfo type takes data available in the time module about the local timezone and makes a practical
datetime.tzinfo to represent the timezone settings of the operating system.

For a more in-depth integration with the operating system, check out tzlocal. It builds on pytz and implements
heuristics for many versions of major operating systems to provide the official pytz tzinfo, instead of the
LocalTZ generalization.

class boltons.timeutils.ConstantTZInfo(name=’ConstantTZ’, offset=datetime.timedelta(0))
A tzinfo subtype whose offset remains constant (no daylight savings).

Parameters

• name (str) – Name of the timezone.

• offset (datetime.timedelta) – Offset of the timezone.

4.24.2 US timezones

These four US timezones were implemented in the datetime documentation and have been reproduced here in
boltons for convenience. More in-depth support is provided by ‘dateutil‘_ and pytz.

timeutils.Eastern = Eastern

timeutils.Central = Central

timeutils.Mountain = Mountain

timeutils.Pacific = Pacific

class boltons.timeutils.USTimeZone(hours, reprname, stdname, dstname)
Copied directly from the Python docs, the USTimeZone is a datetime.tzinfo subtype used to create the
Eastern, Central, Mountain, and Pacific tzinfo types.

4.25 typeutils - Type handling

Python’s built-in functools module builds several useful utilities on top of Python’s first-class function support.
typeutils attempts to do the same for metaprogramming with types and instances.

76 Chapter 4. Section listing

https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://docs.python.org/2.7/library/datetime.html#datetime.tzinfo
https://docs.python.org/2.7/library/datetime.html#datetime.tzinfo
https://pypi.python.org/pypi/tzlocal
https://pypi.python.org/pypi/pytz
https://docs.python.org/2.7/library/datetime.html#datetime.tzinfo
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/datetime.html#datetime.timedelta
https://docs.python.org/2.7/library/datetime.html#module-datetime
https://pypi.python.org/pypi/pytz
https://docs.python.org/2.7/library/datetime.html#datetime.tzinfo
https://docs.python.org/2.7/library/functools.html#module-functools

boltons Documentation, Release 18.0.1

class boltons.typeutils.classproperty(fn)
Much like a property, but the wrapped get function is a class method. For simplicity, only read-only proper-
ties are implemented.

boltons.typeutils.get_all_subclasses(cls)
Recursively finds and returns a list of all types inherited from cls.

>>> class A(object):
... pass
...
>>> class B(A):
... pass
...
>>> class C(B):
... pass
...
>>> class D(A):
... pass
...
>>> [t.__name__ for t in get_all_subclasses(A)]
['B', 'D', 'C']
>>> [t.__name__ for t in get_all_subclasses(B)]
['C']

boltons.typeutils.issubclass(subclass, baseclass)
Just like the built-in issubclass(), this function checks whether subclass is inherited from baseclass. Un-
like the built-in function, this issubclass will simply return False if either argument is not suitable (e.g.,
if subclass is not an instance of type), instead of raising TypeError.

Parameters

• subclass (type) – The target class to check.

• baseclass (type) – The base class subclass will be checked against.

>>> class MyObject(object): pass
...
>>> issubclass(MyObject, object) # always a fun fact
True
>>> issubclass('hi', 'friend')
False

boltons.typeutils.make_sentinel(name=’_MISSING’, var_name=None)
Creates and returns a new instance of a new class, suitable for usage as a “sentinel”, a kind of singleton often
used to indicate a value is missing when None is a valid input.

Parameters

• name (str) – Name of the Sentinel

• var_name (str) – Set this name to the name of the variable in its respective module
enable pickleability.

>>> make_sentinel(var_name='_MISSING')
_MISSING

The most common use cases here in boltons are as default values for optional function arguments, partly because
of its less-confusing appearance in automatically generated documentation. Sentinels also function well as
placeholders in queues and linked lists.

4.25. typeutils - Type handling 77

https://docs.python.org/2.7/library/functions.html#property
https://docs.python.org/2.7/library/functions.html#type
https://docs.python.org/2.7/library/functions.html#type
https://docs.python.org/2.7/library/functions.html#type
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

boltons Documentation, Release 18.0.1

Note: By design, additional calls to make_sentinel with the same values will not produce equivalent
objects.

>>> make_sentinel('TEST') == make_sentinel('TEST')
False
>>> type(make_sentinel('TEST')) == type(make_sentinel('TEST'))
False

4.26 urlutils - Structured URL

urlutils is a module dedicated to one of software’s most versatile, well-aged, and beloved data structures: the
URL, also known as the Uniform Resource Locator.

Among other things, this module is a full reimplementation of URLs, without any reliance on the urlparse or
urllib standard library modules. The centerpiece and top-level interface of urlutils is the URL type. Also featured
is the find_all_links() convenience function. Some low-level functions and constants are also below.

The implementations in this module are based heavily on RFC 3986 and RFC 3987, and incorporates details from
several other RFCs and W3C documents.

New in version 17.2.

4.26.1 The URL type

class boltons.urlutils.URL(url=”)
The URL is one of the most ubiquitous data structures in the virtual and physical landscape. From blogs to
billboards, URLs are so common, that it’s easy to overlook their complexity and power.

There are 8 parts of a URL, each with its own semantics and special characters:

• scheme

• username

• password

• host

• port

• path

• query_params (query string parameters)

• fragment

Each is exposed as an attribute on the URL object. RFC 3986 offers this brief structural summary of the main
URL components:

foo://user:pass@example.com:8042/over/there?name=ferret#nose
_/ _______/ _________/ __/_________/ _________/ __/
| | | | | | |

scheme userinfo host port path query fragment

And here’s how that example can be manipulated with the URL type:

78 Chapter 4. Section listing

https://en.wikipedia.org/wiki/Uniform_Resource_Locator
https://docs.python.org/2.7/library/urlparse.html#module-urlparse
https://docs.python.org/2.7/library/urllib.html#module-urllib
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3987
https://www.w3.org/TR/uri-clarification/

boltons Documentation, Release 18.0.1

>>> url = URL('foo://example.com:8042/over/there?name=ferret#nose')
>>> print(url.host)
example.com
>>> print(url.get_authority())
example.com:8042
>>> print(url.qp['name']) # qp is a synonym for query_params
ferret

URL’s approach to encoding is that inputs are decoded as much as possible, and data remains in this decoded
state until re-encoded using the to_text() method. In this way, it’s similar to Python’s current approach of
encouraging immediate decoding of bytes to text.

Note that URL instances are mutable objects. If an immutable representation of the URL is desired, the string
from to_text() may be used. For an immutable, but almost-as-featureful, URL object, check out the hyper-
link package.

scheme
The scheme is an ASCII string, normally lowercase, which specifies the semantics for the rest of the URL,
as well as network protocol in many cases. For example, “http” in “http://hatnote.com”.

username
The username is a string used by some schemes for authentication. For example, “public” in “ftp://public@
example.com”.

password
The password is a string also used for authentication. Technically deprecated by RFC 3986 Section 7.5,
they’re still used in cases when the URL is private or the password is public. For example “password” in
“db://private:password@127.0.0.1”.

host
The host is a string used to resolve the network location of the resource, either empty, a domain, or IP
address (v4 or v6). “example.com”, “127.0.0.1”, and “::1” are all good examples of host strings.

Per spec, fully-encoded output from to_text() is IDNA encoded for compatibility with DNS.

port
The port is an integer used, along with host, in connecting to network locations. 8080 is the port in
“http://localhost:8080/index.html”.

Note: As is the case for 80 for HTTP and 22 for SSH, many schemes have default ports, and Section 3.2.3
of RFC 3986 states that when a URL’s port is the same as its scheme’s default port, the port should not be
emitted:

>>> URL(u'https://github.com:443/mahmoud/boltons').to_text()
u'https://github.com/mahmoud/boltons'

Custom schemes can register their port with register_scheme(). See URL.default_port for
more info.

path
The string starting with the first leading slash after the authority part of the URL, ending with the first
question mark. Often percent-quoted for network use. “/a/b/c” is the path of “http://example.com/a/b/c?
d=e”.

path_parts
The tuple form of path, split on slashes. Empty slash segments are preserved, including that of the
leading slash:

4.26. urlutils - Structured URL 79

https://github.com/mahmoud/hyperlink
https://github.com/mahmoud/hyperlink
http://hatnote.com
ftp://public@example.com
ftp://public@example.com
https://tools.ietf.org/html/rfc3986#section-7.5
https://en.wikipedia.org/wiki/Internationalized_domain_name#Example_of_IDNA_encoding
http://localhost:8080/index.html
https://tools.ietf.org/html/rfc3986#section-3.2.3
https://tools.ietf.org/html/rfc3986#section-3.2.3
http://example.com/a/b/c?d=e
http://example.com/a/b/c?d=e

boltons Documentation, Release 18.0.1

>>> url = URL(u'http://example.com/a/b/c')
>>> url.path_parts
(u'', u'a', u'b', u'c')

query_params
An instance of QueryParamDict, an OrderedMultiDict subtype, mapping textual keys and values
which follow the first question mark after the path. Also available as the handy alias qp:

>>> url = URL('http://boltons.readthedocs.io/en/latest/?utm_source=docs&
→˓sphinx=ok')
>>> url.qp.keys()
[u'utm_source', u'sphinx']

Also percent-encoded for network use cases.

fragment
The string following the first ‘#’ after the query_params until the end of the URL. It has no inherent
internal structure, and is percent-quoted.

classmethod from_parts(scheme=None, host=None, path_parts=(), query_params=(), frag-
ment=u”, port=None, username=None, password=None)

Build a new URL from parts. Note that the respective arguments are not in the order they would appear in
a URL:

Parameters

• scheme (str) – The scheme of a URL, e.g., ‘http’

• host (str) – The host string, e.g., ‘hatnote.com’

• path_parts (tuple) – The individual text segments of the path, e.g., (‘post’, ‘123’)

• query_params (dict) – An OMD, dict, or list of (key, value) pairs representing the
keys and values of the URL’s query parameters.

• fragment (str) – The fragment of the URL, e.g., ‘anchor1’

• port (int) – The integer port of URL, automatic defaults are available for registered
schemes.

• username (str) – The username for the userinfo part of the URL.

• password (str) – The password for the userinfo part of the URL.

Note that this method does relatively little validation. URL.to_text() should be used to check if any
errors are produced while composing the final textual URL.

to_text(full_quote=False)
Render a string representing the current state of the URL object.

>>> url = URL('http://listen.hatnote.com')
>>> url.fragment = 'en'
>>> print(url.to_text())
http://listen.hatnote.com#en

By setting the full_quote flag, the URL can either be fully quoted or minimally quoted. The most common
characteristic of an encoded-URL is the presence of percent-encoded text (e.g., %60). Unquoted URLs are
more readable and suitable for display, whereas fully-quoted URLs are more conservative and generally
necessary for sending over the network.

default_port
Return the default port for the currently-set scheme. Returns None if the scheme is unrecognized.

80 Chapter 4. Section listing

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

boltons Documentation, Release 18.0.1

See register_scheme() above. If port matches this value, no port is emitted in the output of
to_text().

Applies the same ‘+’ heuristic detailed in URL.uses_netloc().

uses_netloc
Whether or not a URL uses : or :// to separate the scheme from the rest of the URL depends on the
scheme’s own standard definition. There is no way to infer this behavior from other parts of the URL. A
scheme either supports network locations or it does not.

The URL type’s approach to this is to check for explicitly registered schemes, with common schemes like
HTTP preregistered. This is the same approach taken by urlparse.

URL adds two additional heuristics if the scheme as a whole is not registered. First, it attempts to check the
subpart of the scheme after the last + character. This adds intuitive behavior for schemes like git+ssh.
Second, if a URL with an unrecognized scheme is loaded, it will maintain the separator it sees.

>>> print(URL('fakescheme://test.com').to_text())
fakescheme://test.com
>>> print(URL('mockscheme:hello:world').to_text())
mockscheme:hello:world

get_authority(full_quote=False, with_userinfo=False)
Used by URL schemes that have a network location, get_authority() combines username,
password, host, and port into one string, the authority, that is used for connecting to a network-
accessible resource.

Used internally by to_text() and can be useful for labeling connections.

>>> url = URL('ftp://user@ftp.debian.org:2121/debian/README')
>>> print(url.get_authority())
ftp.debian.org:2121
>>> print(url.get_authority(with_userinfo=True))
user@ftp.debian.org:2121

Parameters

• full_quote (bool) – Whether or not to apply IDNA encoding. Defaults to False.

• with_userinfo (bool) – Whether or not to include username and password, techni-
cally part of the authority. Defaults to False.

normalize(with_case=True)
Resolve any “.” and “..” references in the path, as well as normalize scheme and host casing. To turn off
case normalization, pass with_case=False.

More information can be found in Section 6.2.2 of RFC 3986.

navigate(dest)
Factory method that returns a _new_ URL based on a given destination, dest. Useful for navigating those
relative links with ease.

The newly created URL is normalized before being returned.

>>> url = URL('http://boltons.readthedocs.io')
>>> url.navigate('en/latest/')
URL(u'http://boltons.readthedocs.io/en/latest/')

Parameters dest (str) – A string or URL object representing the destination

4.26. urlutils - Structured URL 81

https://docs.python.org/2.7/library/urlparse.html#module-urlparse
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://tools.ietf.org/html/rfc3986#section-6.2.2
https://docs.python.org/2.7/library/functions.html#str

boltons Documentation, Release 18.0.1

More information can be found in Section 5 of RFC 3986.

Related functions

boltons.urlutils.find_all_links(text, with_text=False, default_scheme=’https’, schemes=())
This function uses heuristics to searches plain text for strings that look like URLs, returning a list of URL
objects. It supports limiting the accepted schemes, and returning interleaved text as well.

>>> find_all_links('Visit https://boltons.rtfd.org!')
[URL(u'https://boltons.rtfd.org')]
>>> find_all_links('Visit https://boltons.rtfd.org!', with_text=True)
[u'Visit ', URL(u'https://boltons.rtfd.org'), u'!']

Parameters

• text (str) – The text to search.

• with_text (bool) – Whether or not to interleave plaintext blocks with the returned URL
objects. Having all tokens can be useful for transforming the text, e.g., replacing links with
HTML equivalents. Defaults to False.

• default_scheme (str) – Many URLs are written without the scheme component. This
function can match a reasonable subset of those, provided default_scheme is set to a string.
Set to False to disable matching scheme-less URLs. Defaults to 'https'.

• schemes (list) – A list of strings that a URL’s scheme must match in order to be included
in the results. Defaults to empty, which matches all schemes.

Note: Currently this function does not support finding IPv6 addresses or URLs with netloc-less schemes, like
mailto.

boltons.urlutils.register_scheme(text, uses_netloc=None, default_port=None)
Registers new scheme information, resulting in correct port and slash behavior from the URL object. There are
dozens of standard schemes preregistered, so this function is mostly meant for proprietary internal customiza-
tions or stopgaps on missing standards information. If a scheme seems to be missing, please file an issue!

Parameters

• text (str) – Text representing the scheme. (the ‘http’ in ‘http://hatnote.com’)

• uses_netloc (bool) – Does the scheme support specifying a network host? For in-
stance, “http” does, “mailto” does not.

• default_port (int) – The default port, if any, for netloc-using schemes.

4.26.2 Low-level functions

A slew of functions used internally by URL.

boltons.urlutils.parse_url(url_text)
Used to parse the text for a single URL into a dictionary, used internally by the URL type.

Note that “URL” has a very narrow, standards-based definition. While parse_url() may raise
URLParseError under a very limited number of conditions, such as non-integer port, a surprising num-
ber of strings are technically valid URLs. For instance, the text "url" is a valid URL, because it is a relative
path.

82 Chapter 4. Section listing

https://tools.ietf.org/html/rfc3986#section-5
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
https://github.com/mahmoud/boltons/issues
https://docs.python.org/2.7/library/functions.html#str
http://hatnote.com
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int

boltons Documentation, Release 18.0.1

In short, do not expect this function to validate form inputs or other more colloquial usages of URLs.

>>> res = parse_url('http://127.0.0.1:3000/?a=1')
>>> sorted(res.keys()) # res is a basic dictionary
['_netloc_sep', 'authority', 'family', 'fragment', 'host', 'password', 'path',
→˓'port', 'query', 'scheme', 'username']

boltons.urlutils.parse_host(host)
Low-level function used to parse the host portion of a URL.

Returns a tuple of (family, host) where family is a socket module constant or None, and host is a string.

>>> parse_host('googlewebsite.com') == (None, 'googlewebsite.com')
True
>>> parse_host('[::1]') == (socket.AF_INET6, '::1')
True
>>> parse_host('192.168.1.1') == (socket.AF_INET, '192.168.1.1')
True

Odd doctest formatting above due to py3’s switch from int to enums for socket constants.

boltons.urlutils.parse_qsl(qs, keep_blank_values=True, encoding=’utf8’)
Converts a query string into a list of (key, value) pairs.

boltons.urlutils.resolve_path_parts(path_parts)
Normalize the URL path by resolving segments of ‘.’ and ‘..’, resulting in a dot-free path. See RFC 3986 section
5.2.4, Remove Dot Segments.

class boltons.urlutils.QueryParamDict(*args, **kwargs)
A subclass of OrderedMultiDict specialized for representing query string values. Everything is fully
unquoted on load and all parsed keys and values are strings by default.

As the name suggests, multiple values are supported and insertion order is preserved.

>>> qp = QueryParamDict.from_text(u'key=val1&key=val2&utm_source=rtd')
>>> qp.getlist('key')
[u'val1', u'val2']
>>> qp['key']
u'val2'
>>> qp.add('key', 'val3')
>>> qp.to_text()
'key=val1&key=val2&utm_source=rtd&key=val3'

See OrderedMultiDict for more API features.

classmethod from_text(query_string)
Parse query_string and return a new QueryParamDict.

to_text(full_quote=False)
Render and return a query string.

Parameters full_quote (bool) – Whether or not to percent-quote special characters or
leave them decoded for readability.

Quoting

URLs have many parts, and almost as many individual “quoting” (encoding) strategies.

boltons.urlutils.quote_userinfo_part(text, full_quote=True)
Quote special characters in either the username or password section of the URL. Note that userinfo in URLs is

4.26. urlutils - Structured URL 83

https://docs.python.org/2.7/library/socket.html#module-socket
https://docs.python.org/2.7/library/socket.html#module-socket
https://docs.python.org/2.7/library/functions.html#bool

boltons Documentation, Release 18.0.1

considered deprecated in many circles (especially browsers), and support for percent-encoded userinfo can be
spotty.

boltons.urlutils.quote_path_part(text, full_quote=True)
Percent-encode a single segment of a URL path.

boltons.urlutils.quote_query_part(text, full_quote=True)
Percent-encode a single query string key or value.

boltons.urlutils.quote_fragment_part(text, full_quote=True)
Quote the fragment part of the URL. Fragments don’t have subdelimiters, so the whole URL fragment can be
passed.

There is however, only one unquoting strategy:

boltons.urlutils.unquote(string, encoding=’utf-8’, errors=’replace’)
Percent-decode a string, by replacing %xx escapes with their single-character equivalent. The optional encoding
and errors parameters specify how to decode percent-encoded sequences into Unicode characters, as accepted by
the bytes.decode() method. By default, percent-encoded sequences are decoded with UTF-8, and invalid
sequences are replaced by a placeholder character.

>>> unquote(u'abc%20def')
u'abc def'

4.26.3 Useful constants

boltons.urlutils.SCHEME_PORT_MAP
A mapping of URL schemes to their protocols’ default ports. Painstakingly assembled from the IANA scheme
registry, port registry, and independent research.

Keys are lowercase strings, values are integers or None, with None indicating that the scheme does not have a
default port (or may not support ports at all):

>>> boltons.urlutils.SCHEME_PORT_MAP['http']
80
>>> boltons.urlutils.SCHEME_PORT_MAP['file']
None

See URL.port for more info on how it is used. See NO_NETLOC_SCHEMES for more scheme info.

Also available in JSON.

boltons.urlutils.NO_NETLOC_SCHEMES
This is a set of schemes explicitly do not support network resolution, such as “mailto” and “urn”.

84 Chapter 4. Section listing

https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://gist.github.com/mahmoud/2fe281a8daaff26cfe9c15d2c5bf5c8b
https://docs.python.org/2.7/library/stdtypes.html#set

Python Module Index

b
boltons.cacheutils, 10
boltons.debugutils, 15
boltons.dictutils, 16
boltons.ecoutils, 21
boltons.fileutils, 23
boltons.formatutils, 26
boltons.funcutils, 28
boltons.gcutils, 31
boltons.ioutils, 32
boltons.iterutils, 34
boltons.jsonutils, 43
boltons.listutils, 44
boltons.mathutils, 45
boltons.mboxutils, 46
boltons.namedutils, 47
boltons.queueutils, 48
boltons.setutils, 49
boltons.socketutils, 51
boltons.statsutils, 55
boltons.strutils, 62
boltons.tableutils, 67
boltons.tbutils, 69
boltons.timeutils, 72
boltons.typeutils, 76
boltons.urlutils, 78

85

boltons Documentation, Release 18.0.1

86 Python Module Index

Index

A
a10n() (in module boltons.strutils), 65
add() (boltons.cacheutils.ThresholdCounter method), 14
add() (boltons.dictutils.OrderedMultiDict method), 17
add() (boltons.queueutils.BasePriorityQueue method), 49
add() (boltons.setutils.IndexedSet method), 50
addlist() (boltons.dictutils.OrderedMultiDict method), 17
append() (boltons.listutils.BarrelList method), 45
args2cmd() (in module boltons.strutils), 66
args2sh() (in module boltons.strutils), 66
asciify() (in module boltons.strutils), 63
atomic_rename() (in module boltons.fileutils), 25
atomic_save() (in module boltons.fileutils), 24
AtomicSaver (class in boltons.fileutils), 24

B
backoff() (in module boltons.iterutils), 39
backoff_iter() (in module boltons.iterutils), 39
BarrelList (class in boltons.listutils), 44
BaseFormatField (class in boltons.formatutils), 27
BasePriorityQueue (class in boltons.queueutils), 48
BList (in module boltons.listutils), 44
boltons.cacheutils (module), 10
boltons.debugutils (module), 15
boltons.dictutils (module), 16
boltons.ecoutils (module), 21
boltons.fileutils (module), 23
boltons.formatutils (module), 26
boltons.funcutils (module), 28
boltons.gcutils (module), 31
boltons.ioutils (module), 32
boltons.iterutils (module), 34
boltons.jsonutils (module), 43
boltons.listutils (module), 44
boltons.mathutils (module), 45
boltons.mboxutils (module), 46
boltons.namedutils (module), 47
boltons.queueutils (module), 48
boltons.setutils (module), 49

boltons.socketutils (module), 51
boltons.statsutils (module), 55
boltons.strutils (module), 62
boltons.tableutils (module), 67
boltons.tbutils (module), 69
boltons.timeutils (module), 72
boltons.typeutils (module), 76
boltons.urlutils (module), 78
bucketize() (in module boltons.iterutils), 41
buffer() (boltons.socketutils.BufferedSocket method), 52
BufferedSocket (class in boltons.socketutils), 51
bytes2human() (in module boltons.strutils), 64

C
cached() (in module boltons.cacheutils), 13
CachedInstancePartial (class in boltons.funcutils), 30
cachedmethod() (in module boltons.cacheutils), 13
cachedproperty() (in module boltons.cacheutils), 14
Callpoint (class in boltons.tbutils), 70
callpoint_type (boltons.tbutils.ContextualTracebackInfo

attribute), 71
callpoint_type (boltons.tbutils.TracebackInfo attribute),

70
camel2under() (in module boltons.strutils), 62
cardinalize() (in module boltons.strutils), 63
ceil() (in module boltons.mathutils), 46
Central (boltons.timeutils attribute), 76
chunked() (in module boltons.iterutils), 35
chunked_iter() (in module boltons.iterutils), 36
clamp() (in module boltons.mathutils), 45
classproperty (class in boltons.typeutils), 76
clear() (boltons.cacheutils.LRI method), 11
clear() (boltons.cacheutils.LRU method), 12
clear() (boltons.dictutils.OneToOne method), 20
clear() (boltons.dictutils.OrderedMultiDict method), 18
clear() (boltons.setutils.IndexedSet method), 50
clear_cache() (boltons.statsutils.Stats method), 56
close() (boltons.socketutils.BufferedSocket method), 52
ConnectionClosed, 54
ConstantTZInfo (class in boltons.timeutils), 76

87

boltons Documentation, Release 18.0.1

construct_format_field_str() (in module
boltons.formatutils), 27

ContextualCallpoint (class in boltons.tbutils), 71
ContextualExceptionInfo (class in boltons.tbutils), 71
ContextualTracebackInfo (class in boltons.tbutils), 71
copy() (boltons.cacheutils.LRI method), 11
copy() (boltons.cacheutils.LRU method), 12
copy() (boltons.dictutils.OneToOne method), 20
copy() (boltons.dictutils.OrderedMultiDict method), 18
copy_function() (in module boltons.funcutils), 31
copytree() (in module boltons.fileutils), 24
count (boltons.statsutils.Stats attribute), 57
count() (boltons.listutils.BarrelList method), 45
count() (boltons.setutils.IndexedSet method), 50
counts() (boltons.dictutils.OrderedMultiDict method), 18
cur_byte_pos (boltons.jsonutils.JSONLIterator attribute),

44

D
daterange() (in module boltons.timeutils), 72
decimal_relative_time() (in module boltons.timeutils), 75
default_port (boltons.urlutils.URL attribute), 80
DeferredValue (class in boltons.formatutils), 26
del_slice() (boltons.listutils.BarrelList method), 45
describe() (boltons.statsutils.Stats method), 57
describe() (in module boltons.statsutils), 59
difference() (boltons.setutils.IndexedSet method), 50
difference_update() (boltons.setutils.IndexedSet method),

50
dir_dict() (in module boltons.funcutils), 31
discard() (boltons.setutils.IndexedSet method), 50
dt_to_timestamp() (in module boltons.timeutils), 74
DummyFile (class in boltons.fileutils), 26

E
Eastern (boltons.timeutils attribute), 76
elements() (boltons.cacheutils.ThresholdCounter

method), 15
Error, 54
escape_shell_args() (in module boltons.strutils), 65
ExceptionInfo (class in boltons.tbutils), 69
extend() (boltons.listutils.BarrelList method), 45
extend() (boltons.tableutils.Table method), 67

F
family (boltons.socketutils.BufferedSocket attribute), 52
fileno() (boltons.socketutils.BufferedSocket method), 52
FilePerms (class in boltons.fileutils), 25
find_all_links() (in module boltons.urlutils), 82
find_hashtags() (in module boltons.strutils), 64
first() (in module boltons.iterutils), 42
floor() (in module boltons.mathutils), 46
flush() (boltons.mboxutils.mbox_readonlydir method), 47
flush() (boltons.socketutils.BufferedSocket method), 52

format_histogram() (boltons.statsutils.Stats method), 57
format_histogram_counts() (in module boltons.statsutils),

60
format_int_list() (in module boltons.strutils), 66
fragment (boltons.urlutils.URL attribute), 80
frange() (in module boltons.iterutils), 40
from_current() (boltons.tbutils.Callpoint class method),

71
from_current() (boltons.tbutils.ExceptionInfo class

method), 69
from_data() (boltons.tableutils.Table class method), 67
from_dict() (boltons.tableutils.Table class method), 68
from_dict() (boltons.tbutils.TracebackInfo class method),

70
from_exc_info() (boltons.tbutils.ExceptionInfo class

method), 69
from_frame() (boltons.tbutils.Callpoint class method), 71
from_frame() (boltons.tbutils.ContextualCallpoint class

method), 71
from_frame() (boltons.tbutils.TracebackInfo class

method), 70
from_func() (boltons.funcutils.FunctionBuilder class

method), 30
from_iterable() (boltons.listutils.BarrelList class method),

45
from_iterable() (boltons.setutils.IndexedSet class

method), 50
from_list() (boltons.tableutils.Table class method), 68
from_object() (boltons.tableutils.Table class method), 68
from_parts() (boltons.urlutils.URL class method), 80
from_string() (boltons.tbutils.ParsedException class

method), 72
from_tb() (boltons.tbutils.Callpoint class method), 71
from_tb() (boltons.tbutils.ContextualCallpoint class

method), 71
from_text() (boltons.urlutils.QueryParamDict class

method), 83
from_traceback() (boltons.tbutils.TracebackInfo class

method), 70
fromkeys() (boltons.dictutils.OrderedMultiDict class

method), 18
fstr (boltons.formatutils.BaseFormatField attribute), 27
FunctionBuilder (class in boltons.funcutils), 29

G
GCToggler (class in boltons.gcutils), 32
get() (boltons.cacheutils.LRI method), 11
get() (boltons.cacheutils.LRU method), 12
get() (boltons.cacheutils.ThresholdCounter method), 15
get() (boltons.dictutils.OrderedMultiDict method), 18
get_all() (in module boltons.gcutils), 32
get_all_subclasses() (in module boltons.typeutils), 77
get_authority() (boltons.urlutils.URL method), 81
get_cell_html() (boltons.tableutils.Table method), 68

88 Index

boltons Documentation, Release 18.0.1

get_common_count() (boltons.cacheutils.ThresholdCounter
method), 15

get_commonality() (boltons.cacheutils.ThresholdCounter
method), 15

get_defaults_dict() (boltons.funcutils.FunctionBuilder
method), 30

get_format_args() (in module boltons.formatutils), 27
get_formatted() (boltons.tbutils.ExceptionInfo method),

69
get_formatted() (boltons.tbutils.TracebackInfo method),

70
get_func() (boltons.funcutils.FunctionBuilder method),

30
get_histogram_counts() (boltons.statsutils.Stats method),

58
get_path() (in module boltons.iterutils), 38
get_profile() (in module boltons.ecoutils), 23
get_quantile() (boltons.statsutils.Stats method), 58
get_uncommon_count() (boltons.cacheutils.ThresholdCounter

method), 15
get_value() (boltons.formatutils.DeferredValue method),

27
get_zscore() (boltons.statsutils.Stats method), 58
getlist() (boltons.dictutils.OrderedMultiDict method), 18
getpeername() (boltons.socketutils.BufferedSocket

method), 52
getrecvbuffer() (boltons.socketutils.BufferedSocket

method), 52
getsendbuffer() (boltons.socketutils.BufferedSocket

method), 52
getsockname() (boltons.socketutils.BufferedSocket

method), 52
getsockopt() (boltons.socketutils.BufferedSocket

method), 52
gunzip_bytes() (in module boltons.strutils), 65

H
HeapPriorityQueue (class in boltons.queueutils), 49
host (boltons.urlutils.URL attribute), 79
html2text() (in module boltons.strutils), 64

I
indent() (in module boltons.strutils), 65
index() (boltons.listutils.BarrelList method), 45
index() (boltons.setutils.IndexedSet method), 50
IndexedSet (class in boltons.setutils), 49
infer_positional_format_args() (in module

boltons.formatutils), 27
insert() (boltons.listutils.BarrelList method), 45
InstancePartial (class in boltons.funcutils), 30
intersection() (boltons.setutils.IndexedSet method), 50
intersection_update() (boltons.setutils.IndexedSet

method), 50
inv (boltons.dictutils.OneToOne attribute), 20

inverted() (boltons.dictutils.OrderedMultiDict method),
18

iqr (boltons.statsutils.Stats attribute), 58
iqr() (in module boltons.statsutils), 60
is_ascii() (in module boltons.strutils), 63
is_collection() (in module boltons.iterutils), 43
is_iterable() (in module boltons.iterutils), 43
is_scalar() (in module boltons.iterutils), 43
is_uuid() (in module boltons.strutils), 64
isdisjoint() (boltons.setutils.IndexedSet method), 50
isoparse() (in module boltons.timeutils), 73
issubclass() (in module boltons.typeutils), 77
issubset() (boltons.setutils.IndexedSet method), 50
issuperset() (boltons.setutils.IndexedSet method), 50
items() (boltons.dictutils.OrderedMultiDict method), 18
iter_difference() (boltons.setutils.IndexedSet method), 50
iter_find_files() (in module boltons.fileutils), 23
iter_intersection() (boltons.setutils.IndexedSet method),

50
iter_slice() (boltons.listutils.BarrelList method), 45
iter_slice() (boltons.setutils.IndexedSet method), 50
iter_splitlines() (in module boltons.strutils), 65
iteritems() (boltons.dictutils.OrderedMultiDict method),

18
iterkeys() (boltons.dictutils.OrderedMultiDict method),

18
itervalues() (boltons.dictutils.OrderedMultiDict method),

18

J
JSONLIterator (class in boltons.jsonutils), 43

K
keys() (boltons.dictutils.OrderedMultiDict method), 18
kurtosis (boltons.statsutils.Stats attribute), 58
kurtosis() (in module boltons.statsutils), 60

L
LocalTZ (in module boltons.timeutils), 76
LRI (class in boltons.cacheutils), 11
LRU (class in boltons.cacheutils), 12

M
mad (boltons.statsutils.Stats attribute), 58
make_sentinel() (in module boltons.typeutils), 77
max (boltons.statsutils.Stats attribute), 59
mbox_readonlydir (class in boltons.mboxutils), 46
mean (boltons.statsutils.Stats attribute), 59
mean() (in module boltons.statsutils), 60
median (boltons.statsutils.Stats attribute), 59
median() (in module boltons.statsutils), 60
median_abs_dev (boltons.statsutils.Stats attribute), 59
median_abs_dev() (in module boltons.statsutils), 61
MessageTooLong, 54

Index 89

boltons Documentation, Release 18.0.1

min (boltons.statsutils.Stats attribute), 59
mkdir_p() (in module boltons.fileutils), 23
most_common() (boltons.cacheutils.ThresholdCounter

method), 15
Mountain (boltons.timeutils attribute), 76
mro_items() (in module boltons.funcutils), 31
MultiDict (in module boltons.dictutils), 16
MultiFileReader (class in boltons.ioutils), 34

N
namedlist() (in module boltons.namedutils), 47
namedtuple() (in module boltons.namedutils), 47
navigate() (boltons.urlutils.URL method), 81
NetstringInvalidSize, 55
NetstringMessageTooLong, 55
NetstringProtocolError, 55
NetstringSocket (class in boltons.socketutils), 55
next() (boltons.jsonutils.JSONLIterator method), 44
NO_NETLOC_SCHEMES

(boltons.urlutils.boltons.urlutils attribute),
84

normalize() (boltons.urlutils.URL method), 81

O
OMD (in module boltons.dictutils), 16
one() (in module boltons.iterutils), 42
OneToOne (class in boltons.dictutils), 20
OrderedMultiDict (class in boltons.dictutils), 16
ordinalize() (in module boltons.strutils), 62

P
Pacific (boltons.timeutils attribute), 76
pairwise() (in module boltons.iterutils), 36
pairwise_iter() (in module boltons.iterutils), 36
parse_host() (in module boltons.urlutils), 83
parse_int_list() (in module boltons.strutils), 66
parse_qsl() (in module boltons.urlutils), 83
parse_timedelta() (in module boltons.timeutils), 74
parse_url() (in module boltons.urlutils), 82
ParsedException (class in boltons.tbutils), 72
partial (in module boltons.funcutils), 30
partition() (in module boltons.iterutils), 41
password (boltons.urlutils.URL attribute), 79
path (boltons.urlutils.URL attribute), 79
path_parts (boltons.urlutils.URL attribute), 79
pdb_on_exception() (in module boltons.debugutils), 15
pdb_on_signal() (in module boltons.debugutils), 15
pearson_type (boltons.statsutils.Stats attribute), 59
pearson_type() (in module boltons.statsutils), 61
peek() (boltons.queueutils.BasePriorityQueue method),

49
peek() (boltons.socketutils.BufferedSocket method), 52
pluralize() (in module boltons.strutils), 63
pop() (boltons.cacheutils.LRU method), 12

pop() (boltons.dictutils.OneToOne method), 20
pop() (boltons.dictutils.OrderedMultiDict method), 18
pop() (boltons.listutils.BarrelList method), 45
pop() (boltons.queueutils.BasePriorityQueue method), 49
pop() (boltons.setutils.IndexedSet method), 50
popall() (boltons.dictutils.OrderedMultiDict method), 19
popitem() (boltons.cacheutils.LRU method), 12
popitem() (boltons.dictutils.OneToOne method), 21
poplast() (boltons.dictutils.OrderedMultiDict method), 19
port (boltons.urlutils.URL attribute), 79
print_exception() (in module boltons.tbutils), 72
PriorityQueue (in module boltons.queueutils), 48
proto (boltons.socketutils.BufferedSocket attribute), 52

Q
query_params (boltons.urlutils.URL attribute), 80
QueryParamDict (class in boltons.urlutils), 83
quote_fragment_part() (in module boltons.urlutils), 84
quote_path_part() (in module boltons.urlutils), 84
quote_query_part() (in module boltons.urlutils), 84
quote_userinfo_part() (in module boltons.urlutils), 83

R
recv() (boltons.socketutils.BufferedSocket method), 52
recv_close() (boltons.socketutils.BufferedSocket

method), 53
recv_size() (boltons.socketutils.BufferedSocket method),

53
recv_until() (boltons.socketutils.BufferedSocket method),

53
register_scheme() (in module boltons.urlutils), 82
rel_std_dev (boltons.statsutils.Stats attribute), 59
rel_std_dev() (in module boltons.statsutils), 61
relative_time() (in module boltons.timeutils), 75
remap() (in module boltons.iterutils), 37
remove() (boltons.queueutils.BasePriorityQueue

method), 49
remove() (boltons.setutils.IndexedSet method), 50
remove_arg() (boltons.funcutils.FunctionBuilder

method), 30
replace() (in module boltons.fileutils), 25
research() (in module boltons.iterutils), 39
resolve_path_parts() (in module boltons.urlutils), 83
reverse() (boltons.listutils.BarrelList method), 45
reverse() (boltons.setutils.IndexedSet method), 50
reverse_iter_lines() (in module boltons.jsonutils), 44

S
same() (in module boltons.iterutils), 42
scheme (boltons.urlutils.URL attribute), 79
SCHEME_PORT_MAP (boltons.urlutils.boltons.urlutils

attribute), 84
send() (boltons.socketutils.BufferedSocket method), 53

90 Index

boltons Documentation, Release 18.0.1

sendall() (boltons.socketutils.BufferedSocket method), 54
set_conv() (boltons.formatutils.BaseFormatField

method), 27
set_fname() (boltons.formatutils.BaseFormatField

method), 27
set_fspec() (boltons.formatutils.BaseFormatField

method), 27
setdefault() (boltons.cacheutils.LRI method), 11
setdefault() (boltons.cacheutils.LRU method), 12
setdefault() (boltons.dictutils.OneToOne method), 21
setdefault() (boltons.dictutils.OrderedMultiDict method),

19
setmaxsize() (boltons.socketutils.BufferedSocket

method), 54
setsockopt() (boltons.socketutils.BufferedSocket

method), 54
settimeout() (boltons.socketutils.BufferedSocket

method), 54
shutdown() (boltons.socketutils.BufferedSocket method),

54
singularize() (in module boltons.strutils), 63
skewness (boltons.statsutils.Stats attribute), 59
skewness() (in module boltons.statsutils), 61
slugify() (in module boltons.strutils), 62
sort() (boltons.listutils.BarrelList method), 45
sort() (boltons.setutils.IndexedSet method), 50
sorted() (boltons.dictutils.OrderedMultiDict method), 19
SortedPriorityQueue (class in boltons.queueutils), 49
sortedvalues() (boltons.dictutils.OrderedMultiDict

method), 19
source_file (boltons.tbutils.ParsedException attribute), 72
split() (in module boltons.iterutils), 35
split_iter() (in module boltons.iterutils), 35
split_punct_ws() (in module boltons.strutils), 62
SpooledBytesIO (class in boltons.ioutils), 33
SpooledStringIO (class in boltons.ioutils), 33
Stats (class in boltons.statsutils), 56
std_dev (boltons.statsutils.Stats attribute), 59
std_dev() (in module boltons.statsutils), 61
strip_ansi() (in module boltons.strutils), 64
strpdate() (in module boltons.timeutils), 74
symmetric_difference() (boltons.setutils.IndexedSet

method), 50
symmetric_difference_update()

(boltons.setutils.IndexedSet method), 50

T
Table (class in boltons.tableutils), 67
tb_frame_str() (boltons.tbutils.Callpoint method), 71
tb_info_type (boltons.tbutils.ContextualExceptionInfo at-

tribute), 71
tb_info_type (boltons.tbutils.ExceptionInfo attribute), 69
ThresholdCounter (class in boltons.cacheutils), 14
Timeout, 54

to_dict() (boltons.tbutils.Callpoint method), 71
to_dict() (boltons.tbutils.ContextualCallpoint method), 71
to_dict() (boltons.tbutils.ExceptionInfo method), 69
to_dict() (boltons.tbutils.ParsedException method), 72
to_dict() (boltons.tbutils.TracebackInfo method), 70
to_html() (boltons.tableutils.Table method), 68
to_string() (boltons.tbutils.ParsedException method), 72
to_text() (boltons.tableutils.Table method), 68
to_text() (boltons.urlutils.QueryParamDict method), 83
to_text() (boltons.urlutils.URL method), 80
todict() (boltons.dictutils.OrderedMultiDict method), 20
toggle_gc (in module boltons.gcutils), 32
toggle_gc_postcollect (in module boltons.gcutils), 32
tokenize_format_str() (in module boltons.formatutils), 27
total_seconds() (in module boltons.timeutils), 74
TracebackInfo (class in boltons.tbutils), 69
trim_relative() (boltons.statsutils.Stats method), 59
trimean (boltons.statsutils.Stats attribute), 59
trimean() (in module boltons.statsutils), 61
type (boltons.socketutils.BufferedSocket attribute), 54

U
under2camel() (in module boltons.strutils), 62
union() (boltons.setutils.IndexedSet method), 50
unique() (in module boltons.iterutils), 36
unique_iter() (in module boltons.iterutils), 36
unit_len() (in module boltons.strutils), 62
unquote() (in module boltons.urlutils), 84
update() (boltons.cacheutils.LRI method), 11
update() (boltons.cacheutils.LRU method), 12
update() (boltons.cacheutils.ThresholdCounter method),

15
update() (boltons.dictutils.OneToOne method), 21
update() (boltons.dictutils.OrderedMultiDict method), 20
update() (boltons.setutils.IndexedSet method), 50
update_extend() (boltons.dictutils.OrderedMultiDict

method), 20
URL (class in boltons.urlutils), 78
username (boltons.urlutils.URL attribute), 79
uses_netloc (boltons.urlutils.URL attribute), 81
USTimeZone (class in boltons.timeutils), 76
UTC (boltons.timeutils attribute), 76

V
values() (boltons.dictutils.OrderedMultiDict method), 20
variance (boltons.statsutils.Stats attribute), 59
variance() (in module boltons.statsutils), 61
viewitems() (boltons.dictutils.OrderedMultiDict method),

20
viewkeys() (boltons.dictutils.OrderedMultiDict method),

20
viewvalues() (boltons.dictutils.OrderedMultiDict

method), 20

Index 91

boltons Documentation, Release 18.0.1

W
windowed() (in module boltons.iterutils), 36
windowed_iter() (in module boltons.iterutils), 36
wrap_trace() (in module boltons.debugutils), 15
wraps() (in module boltons.funcutils), 28

X
xfrange() (in module boltons.iterutils), 40

92 Index

	Installation and Integration
	Third-party packages
	Gaps
	Section listing
	Architecture
	cacheutils - Caches and caching
	debugutils - Debugging utilities
	dictutils - Mapping types (OMD)
	ecoutils - Ecosystem analytics
	fileutils - Filesystem helpers
	formatutils - str.format() toolbox
	funcutils - functools fixes
	gcutils - Garbage collecting tools
	ioutils - Input/output enhancements
	iterutils - itertools improvements
	jsonutils - JSON interactions
	listutils - list derivatives
	mathutils - Mathematical functions
	mboxutils - Unix mailbox utilities
	namedutils - Lightweight containers
	queueutils - Priority queues
	setutils - IndexedSet type
	socketutils - socket wrappers
	statsutils - Statistics fundamentals
	strutils - Text manipulation
	tableutils - 2D data structure
	tbutils - Tracebacks and call stacks
	timeutils - datetime additions
	typeutils - Type handling
	urlutils - Structured URL

	Python Module Index

